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ABSTRACT-Advanced driver assistance systems are an important step on the way towards the autonomous driving. 
However, there are new challenges in the release of increasingly complex systems. For the testing of those systems 
many test kilometers are necessary to represent sufficient diversity. Hence, the virtual testing of driver assistance 
systems brings new opportunities. In virtual environments, it is possible to run a much higher distance in a short time. 
Simultaneously, the complexity of the environment and the test scenarios are individually adjustable. It is possible to 
test scenarios that are not feasible in a real environment due to a risk of injury. A big challenge is the physical correct 
implementation of real vehicles and their components into the Virtual Reality. To enable a realistic virtual testing the 
vehicles surrounding sensors need to be modeled adequately. Thus, this paper presents an approach for the 
implementation of a Lidar model into a Virtual Reality. A physical Lidar model is combined with a real-time capable 
vehicle dynamics model to investigate the influence of vehicle movements to the sensor measurements. The models 
are implemented into a highly realistic virtual city environment. Finally, a test campaign shows the influence of the 
Lidars physics and the vehicle dynamics on the detection results. 
 
KEY WORDS : Advanced Driver Assistance Systems (ADAS), Autonomous Mobility, Lidar Simulation, Vehicle 
Dynamics, Raytracing, Virtual Environment, Sensor Simulation 

NOMENCLATURE  

Ar : receiving lens area, m² 
Bλ : electromagnetic bandwidth of the receiving unit, nm 
C0 : speed of light, m/s 
D : receiving lens diameter, m 
ESi : radiation intensity of the sun ,W/m²/nm 
Esun : sun induced energy, J   
fcl  : counter frequency, Hz 
i : incidence vector 
ID : dark current noise 
IFOV : instantaneous field of view, rad 
n : surface normal 
NZ : number of counted timesteps 
PDK : dark current noise, W 
Pr : received power, W 
Pn : sum of noise powers, W 

Psun : sun induced noise power, W 
Pt : transmitting power, W 
QV : beam divergence, rad 
R : distance to target, m 
SNR : signal to noise ratio 
tcl : duration of one counter step, s 
tof : running time of the light, s 
δt : discrete receiving timestep, s 
ηsys : summarized system losses 
θi : incident angle, rad 
ρt : reflectance coefficient 
τ : atmospheric transmission coefficient 
ℜmax : maximum intensity of a photodiode 
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1. INTRODUCTION  

The simulation of environmental sensor data is a research 
issue that becomes more and more important due to a 
raising number of for Autonomous Driver Assistance 
Systems (ADAS) obstructed in new cars. In 2019 48 % 
of all new cars sold in Germany were equipped with a 
lane keeping assistant, 39 % have an autonomous 
emergency brake and 38 % were delivered with an 
adaptive cruise control (Statista, 2020a). In 2020 90% of 
the German car driver were of the opinion that ADAS 
increase the vehicle safety. 89% thought assistance 
systems make driving more pleasant (Statista, 2020b). 
Although the data refer to the German market, a similar 
result can be expected internationally. This leads to the 
expectation that the market for ADAS will continue to 
grow in the future. Besides the opportunities ADAS offer 
to the vehicle safety, they also increase the vehicles 
complexity and the testing effort.  
(Wachenfeld/Winner, 2015) give a theoretical approach 
for the approval of ADAS with regard to an autonomous 
highway pilot. On German motorways a deadly accident 
happens every 662 million kilometers. The authors say 
this situation needs to be reconstructed ten times to 
approve an ADAS system. This leads to a theoretical 
demand of 6.62 Billion test kilometers. This need cannot 
be met by test drives alone. Virtual testing offers 
advantages at this point. However, a distinction must be 
made between different levels of complexity. (Gadringer, 
et al., 2018) provide an approach for the ADAS testing in 
virtual environments in combination with a Hardware in 
the Loop (HiL) testbench for real vehicles. For the 
interaction of the car with the virtual surrounding 
artificial environmental sensors are needs. In the given 
examples, this is limited to the radar sensor technology. 
In addition to radar, Lidar sensors are being used more 
and more in automotive applications. Hence, also for this 
sensor technology accurate models are needed to allow 
the virtual ADAS testing. The literature contains a wide 
variety of approaches to simulating Lidar data. The 
simulation approaches can be roughly divided into two 
concepts, the semantic and the physical Lidar models. 
(Wang, et al., 2019) and (Gusmão, et al., 2020) are 
examples for semantic Lidar models. Their aim is not to 
simulate physical behavior of the Lidar, but to provide 
raw-data augmented with meta data of the virtual 
surrounding. Information like the color of objects or a 
classification are provided. These models are primary 
used for the training on deep learning algorithms and not 
suitable for testing purposes. On the other hand, there are 
the physical models, whose aim is to represent the 
physics of the Lidar. A physical Lidar model approach 
for Automotive applications can be found in (Castaño, et 
al., 2020). The authors use variations of the classical 
radar equation to compute the remaining power a Lidar 
receives of a sent signal, considering various sources of 

interference. The implemented model is largely based on 
(Kim et al., 2013), a simulation model for aerospace 
applications. Due to that, the models has some 
inadequacies, which arise due to other requirements in 
the automotive sector. Furthermore the environment the 
model is implemented in is kept simple. The model 
neglects the changes in the Lidar vision due to vehicle 
dynamics. Even more compley physical models like 
(Byeon, Yoon, 2020) or (Muckenhuber, et al., 2020) are 
not taking this into account. Therefore, this publication 
presents a novel approach to simulate physical correct 
Lidar raw data under consideration of the effects of 
vehicle dynamics. Various sub models for the existing 
problems are introduced. This includes a physical Lidar 
model, a vehicle dynamics model and highly authentic 
virtual city environment. Subsequently a network of the 
sub models is implemented. Finally an exemplary 
investigation is carried out using the implemented model 
to evaluate the influence of vehicle dynamics on 
detection borderline cases in an inner-city scenario. 

2. PHYSICAL LIDAR MODEL 

As described above the physical correct modelling of 
virtual sensor data in artificial environments in realtime 
is an important topic for the testing of autonomous 
driving functions. The model described in the following 
sections is based on a raytracing approach. Virtual rays 
are used to simulate the signal of the emitted and 
reflected light beams, equivalent to a real Lidar system. 
For these both, the impinging powers and the 
disturbances acting on the sensor are taken into account. 
Section 2.1 will present the used methods and the 
underlying model. This is followed by the 
implementations strategy in a virtual reality in section 2.2. 
For this, the Unreal Engine of the developer Epic Games 
is used. At last, Section 2.3 will show the parametrization 
and verification tests of the described model. 
 
2.1. Lidar principle 
 
For the later mathematical description of a Lidar sensor, 
the basic working principles needs to be shown first. 
Automotive applications offer many different Lidar 
systems for the environmental detection. These systems 
differ in the way the surrounding is scanned. The system 
architectures can be divided into three mayor categories. 
Singlebeam scanning Lidar sensors use one laser beam, 
which is deflected by moving optics, for the discrete 
scanning of the environment. At each time step and thus 
each position of the optics, a light pulse is sent into the 
environment. The resolution of these systems is formed 
by the frequency of the emitted light pulses and the 
rotation speed of the deflection unit. In contrast, the 
multibeam principle uses diode arrays to cover the 
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detection field. For each direction to be detected there is 
an LED and an associated photodetector. With this 
system, all light beams are sent at the same time. The 
resolution results from the number of used array elements. 
The third Lidar architecture uses the multibeam sweep 
principle. It can be characterized as a hybrid form of the 
previous presented methods. The systems also uses a 
diode array. However, this array is not static. The sent 
beams are deflected, either by the mechanical movement 
of the array or as with the single beam technique by a 
moving optics. This enables the detection of a 
comparatively wide field depending on the current 
driving situation. For example, the beams can be 
swiveled when turning to detect passers. The advantage 
of this is a wide field of view (FOV) with a 
simultaneously high resolution. Comparatively complex 
algorithms are required to control this process, however 
their development is not the subject of this paper. For this 
reason, the first two approaches are considered in the 
following. (Winner et al., 2016) 
 
Regardless of the scanning method and thus the Lidar 
architecture, the principle of distance determination is 
similar for all Lidar sensors. The time of flight of the light 
signal is determined and used to compute the distance. 
For further considerations, a closer look is taken to the 
example principle of the Time-to-Digital Converter 
(TDC) to determine the time of flight. Figure 1 shows the 
principle of this method. 
 

 
Figure 1 Schematic working principle of a Lidar Sensor 
according to (Kernhof et al., 2018). 
 
The basis of this method is a high-precision sequence 
control. It triggers a light pulse generator at a time step 
and a laser diode emits a light signal with a defined 
amplitude and length. At the same time, the trigger signal 
starts a counter. When the light beam hits a target object, 
it is reflected and a portion of the incident light is casted 
back to the sensor. The amplitude of the reflected pulse 
is depending on the targets reflection properties and the 
environmental conditions. Circumstances such as rain, 
snow or fog can massively reduce the signal strength. In 
a photo sensor, the reflected signal is received, amplified 
and transformed by an analog-to-digital converter (ADC). 
When the signal exceeds a certain threshold value, the 
counter is stopped and the number of counted time steps 
are read out and stored. Through the time between the 

transmission and the reception of the signal, a statement 
can be made about the distance of the target object. With 
this method, the accuracy of the result is significantly 
influenced by the time resolution of the counter. The 
TDC shows an example for a simple method of Lidar data 
analysis. More complex and moderns Lidar systems use 
the form and the amplitude of the reflected signal to 
generate further information about the environment and 
the target object. (Kernhof et al., 2018) However, this is 
neglected in a first step, since in this work an evaluation 
is to be made whether a point is recognized. For that, it is 
necessary to have an accurate mathematic model of the 
Lidar with disturbances and losses. This model is 
introduced in the following section.  
 
2.2. Mathematic Lidar Model 
 
As described before, Lidar sensors use the runtime of the 
light to determine the distance of an object. Equation 1 
shows this relationship, where d represents the distance 
to the target, c0 stands for the natural constant of the 
speed of light and tof is the duration the light takes. 
 

                                             (1) 

                                             (2) 
 
Based on the approach, that a TDC determines the value 
of tof and thereby finds the target distance, the resolution 
of the counter needs to be considered. This is shown in 
Equation 2. The time of flight is computed by the number 
of counted time steps NZ and the clock period of one 
counter step TCL. By the usage of one time step the 
resolution of the distance as shown in Equation 3. 
Equation 4 shows the time step expressed by the clock 
frequency of the counter. 
 

                                             (3) 

                                             (4) 

 
In addition, measurement inaccuracies result from the 
amplification and the analog-digital conversion of the 
received signals. The resulting errors are dependent of 
the used hardware architectures. Pending on the system, 
oversampling methods and filters are used to reduce the 
measurement faults. Due to the large number of systems 
available, it is not sensible to find a mathematically 
universal description. In order to consider these errors, it 
is necessary to find a proper value and to implement it in 
the Lidar model.  
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As mentioned before, the Lidar model should not only 
represent the inadequacies of the distance measurements, 
but also give a decision whether a target point is 
recognized. The receiving power and the induced noise 
significantly determine the detection. A characteristic 
value for evaluation is the signal to noise ratio (SNR). 
The calculation of the SNR-Value is shown in Equation 
5, where Pr is the received power and Pn is the sum of the 
induced noise powers.  
 

                                             (5) 

 
The receiving power of the reflected light beams is 
influenced by various parameters. Optical properties of 
the target, environmental conditions, the target distance 
and the characteristics of the sensor itself, like the 
transmitting power, the beam divergence and the 
receiving lens area, have a major influence on the result. 
The literature provides different approaches for the 
mathematical description of the received power. Mostly 
variations of the classical radar equation are used. 
However, the exact implementation differs. Examples 
can be found in (Winner et al., 2016), (Kim et al., 2013) 
and (Kernhof et al., 2018). Due to the different 
conversions, a generally valid equation for the received 
power must be determined for the further investigations. 
Equation 6, adopted from (Kim et al., 2013), is used as a 
basis for this. The nomenclature is adapted to this paper. 
 

                 (7) 

 
In the equation Pt is the transmitting power, ρt is the 
reflectance coefficient of the target object, D is the 
diameter of the receiving lens, τ is the atmospheric 
transmission coefficient, ηsys is the sum of the system 
losses and R is the distance to the target. However, the 
beam divergence and the influence of varying incident 
angles are not regarded. This may be, because the 
equation is used in aerospace Lidar applications. The 
beam divergence can be assumed simplified as shown in 
Equation 8. The sinusoid is omitted due to a small angle 
approximation. 
 

                  (8) 
 
Assuming that the laser beam hitting an object is 
reflected diffusely, the influence on the impinging angle 
can be expressed by the Lambert’s cosine law. In real 
environments, not only diffuse reflections are to be 
expected. For the first implementation, the model offers 

sufficient accuracy. Finally, if the size of the receiving 
lens is expressed in terms of area rather than diameter, 
equation 9 is obtained. 
 

                (9) 

 
Ar represents the area of the receiving lens and θi 
indicates for the impinging angle of the laser beam. The 
equation represents an assumption for calculating the 
received power and needs to be verified later. 
 
The next important parts to calculate the SNR are the 
noise powers acting on the Lidar system. According to 
(Kim et al., 2013) two main noise sources can be found 
for Lidar applications, on the one hand the sun-induced 
noise and on the other hand the dark current noise. The 
sun induced noise results from the sunlight illuminating 
the same targets surface as the laser beam. In the source 
mentioned above, the energy impinging the sensor in a 
defined discrete time step δt is expressed as shown in 
Equation 10.  
 

         (10) 
 
ESi represents the illumination intensity of the sunlight, 
Bλ is the electromagnetic bandwidth of the receiving unit 
and IFOV is the instantaneous field of view. In case the 
same optics for receiving and transmitting the signals is 
used, the IFOV corresponds to the beam divergence. As 
mentioned, the expression calculates an energy. However, 
for the SNR a power is needed. To obtain the power the 
time derivative has to be formed. In this way, δt is omitted. 
The result for the sun induced noise power is shown in 
Equation 11. 
 

              (11) 
 
The method for calculating the dark current noise is 
adopted from (Mackowiak et al., 2015). It is shown in 
Equation 12.  
 

                 (12) 

 
Although (Kim et al., 2013) also provide a method for 
the computation of the dark current noise, the used 
computation is more suitable for the intended application. 
It uses the dark current ID and the maximum sensitivity 
of a photodiode ℜmax for the computation. These 
parameters can usually be found in the data sheets of 
photo elements.  
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Thus all necessary equations for the mathematical 
description of the Lidar are provided and the 
implementation of the model can be done.  
 
2.3. Implementation in a Virtual Reality 
 
The Lidar model is implemented in a Virtual Reality. As 
already mentioned, the Unreal Engine of the developer 
Epic Games will be used. It is a development 
environment originally designed for the production of 
computer games. In the last few years, the use of the 
engine was established in science and technology due to 
the increasing use of Virtual Reality. The programming 
can either be done graphically by using so called 
blueprint scripts or by textual C++ coding. The Lidar 
model will be implemented in C++ due to a higher 
performance and a lager set of functions. Later on, a 
highly realistic city environment will be used for the 
testing of the virtual Lidar sensor. For the first 
implementation, a basic test setting with simple 
geometries is used. A virtual character allows users to 
move the model within the scene by  
 

 
Figure 2 Visualization of the discrete scan process of the 
virtual Lidar by LineTraces. 
 
The implementation of the Lidar model is based on 
raytracing, which is named Linetracing in the Unreal 
Engine. Virtual rays, representing the Lidars light beams, 
are shot into the artificial 3D Scene. As starting point for 
the rays the position of the virtual sensor is used. The end 
position is pending on the azimuth and the elevation 
angle of the respective ray. It is not possible to perform 
the LineTrace in infinite length, therefore a position 
needs to be found for the endpoint that represents the 
range of the Lidar and still limits the computational 
power. The virtual beams are emitted one after another. 
Figure 2 shows this process for the azimuth field. On 
each incrementation step, the actual azimuth angle ϕinst of 
the shot ray is incremented by Δϕ until the whole azimuth 
range ϕtot is covered. After that, the elevation angle is 
incremented and the azimuth range is scanned again. This 
is done until the whole field of view of the virtual sensor 
is covered. The process needs to be done on every 
simulation step. 

                (13) 

 
If a virtual ray hits an object on its way from the starting 
point to the endpoint, the computation of the SNR 
according to Section 2.2 is initialized. To enable this the 
incidence angle of the ray on the object surface is needed. 
The value can be computed by Equation 13, where i. the 
incident vector and n is the surface normal at the impact 
point. The incident vector results from the start point and 
the hitting point. The surface normal can be read directly 
from the LineTrace as a unit vector. Therefore, it is now 
possible to compute the SNR depending on the Lidar 
parameters. The results of the impinging power, the noise 
powers and the SNR are stored in arrays assigned to the 
respective light beam for further processing.  
 
In addition to the calculated outputs, the actual output 
values of the Lidar sensor, the target distances, need to 
be recorded. The coordinates of the impact points can 
directly be read from the Linetraces. However, these 
values are provided in global coordinates. Hence, a 
coordinate transformation to the local axis system of the 
virtual sensor needs to be done. The coordinates are 
provided as floating point values without errors. As 
depicted in section 2.2, the output of real Lidar sensors is 
faulty due to the TDC, the amplification and the A/D-
conversion. The large variance of systems does not allow 
a generally valid mathematical description of these errors. 
Hence, a substitute model needs to be implemented. Most 
Lidar manufacturers provide distance resolutions for 
their sensors. However, it is not practical to simply apply 
these to the measured values. Instead, a white noise with 
the given resolution as a standard deviation is added to 
the signal. This does not necessarily reproduce the real 
physical behavior, but it reproduces the resulting errors 
in sufficient quality. The local, by noise augmented 
impact points are also stored into arrays, according to the 
respective ray.  
 
Finally, the determined points are displayed in color 
according to the calculated SNR in the virtual scene. This 
makes it possible to decide within Virtual Reality 
whether a point is potentially recognized or not. An 
example of the output in the simplified test scene for a 
Lidar sensor with a FOV of 60° in azimuth and 30° in 
elevation is shown in Figure 3. 
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Figure 3 Visualization of the SNR value of recognized 
Lidar points within a simple Virtual Reality test scene. 
 
2.4. Parameterization and Verification of the Lidar 
Model 
 
The Lidar model described and implemented in the 
previous sections gives a theoretical approach for the 
simulation of the physical behavior of Lidar sensors. The 
verification of the model will be the topic of this section. 
Two tests will be carried out to estimate the validity of 
the model. Before carrying out the tests, reasonable 
parameters for the Lidar system must be found. The Lidar 
sensor Valeo SCALA 3D Laser Scanner is used as a 
typical reference for automotive Lidar applications. The 
datasheet for this sensor is provided in (Hexagon, 2021). 
A problem is that not all parameters required for the 
calculation are specified in this document. Hence, further 
assumptions have to be made. The missing parameters 
are adapted from (Weber, 2018), (Kim, et al., 2013) and 
(Hamamatsu, 2018). The values, used for the further 
considerations are summarized in Table 1. 
 
In addition to the parameters for the Lidar sensor itself, 
suitable values for the environmental parameters have to 
be found. The atmospheric transmission coefficient τ can 
be assumed as 0.8 according to (U.S. Naval Academy, 
n.d.). At the wavelength of 950 nm, used by the described 
Lidar system, the Sun irradiance can be considered as 
1.5 W/m²/nm corresponding to (Newport, n.d.).  
These values only represent a first assumption for the 
following tests, later on they need to be dependent on the 
illumination and the viewing conditions of the virtual 
environment. The reflectivity coefficient of the target 
surfaces is specified jet, as it is subject of the following 
tests. In the datasheet (Hexagon, 2021) different 
maximum detection distances are provided for the sensor 
under investigation, depending on the surface reflectivity 
coefficient and the true positive recognition rate (TPR). 
The given values are based on squared a Lambertian 
reflector with an edge length of 1 m. Table 2 summarizes 
these values. 
 
 

Table 1 Identified parameters of the virtual Lidar sensor 

 
Table 2 Maximum detection distances of the Valeo 
Scala Lidar (Hexagon, 2021) 

 
Based on this data the first test setup for the verification 
of the Lidar model is implemented. In the test scene a 
squared plate with a size of 1 m is modeled and placed in 
front of the virtual sensor. The plate is iteratively moved 
away from the actor in steps of 1 m. To reduce the data 
volume only one ray is shot on every simulation period. 
The computed SNR is stored for every distance of the 
plate. The test is carried out twice, once for a reflectivity 
of 0.8 and once for 0.2 of the plate. The result is plotted 
using MathWorks MATLAB as shown in Figure 3. The 
scale for the SNR is logarithmic. 
 

 Symbol Value Unit 

Azimuth Angle ϕtot 145 deg 

Elevation Angle ϑtot  3.2 deg 

Azimuth Resolution Δϕ 0.25 deg 

Elevation 
Resolution Δϑ 0.8 deg 

Distance Resolution ΔR 0.1 m 

Radiated Power Pt 80 W 

Lens Area Ar 0.0007 m² 

Beam Divergence / 
Instantaneous Field  
of View 

Qv / 
IFOV 0.003 rad 

Electromagnetical 
Receiver Bandwidth Bλ 2 nm 

Dark Current ID 10 nA 

Sensitivity Photo 
Diode ℜmax 0.5 A/W 

System Efficiency η 0.9 - 

Distance Reflectivity True Positive 
Rate 

150 m 10 % 10 % 

100 m 10 % 50 % 

150 m 80 % 100 % 

200 m 80 % 55 % 
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Figure 4 Logarithmic plot of the of the SNR values for 
increasing distances and different target reflectivities. 
In order to compare the simulation results with the 
detection behavior of the real Lidar sensor, the computed 
SNR values are summarized in Table 3, according to the 
distances and true positive rates of Table 2. The results 
show a largely valid behavior of the virtual sensor. A 
TPR of 100 % corresponds to a SNR of 24.5. A TPR of 
10 % is represented by an SNR of 4.5. These results are 
plausible. Only for the TPR values 50 % and 55 % other 
results would have been expected. For 55 % the 
according SNR is 10.4, for 50 % it is 15.1. This may be 
due to a slightly inaccurate parameterization of the model, 
as the exact test setup for the measurement of Valeo 
sensor is unknown. Nevertheless, the behavior of the 
sensor model can be considered valid for the carried out 
tests. 
 
Table 3 SNR values read from Figure 4 according to the 
distances and reflectivities of Table 2 

 
In addition, a second test should allow an evaluation of 
the model behavior at different incident angles. The test 
setup is similar to the last one. A rectangular plate is 
placed at a distance of 1 m in front of the virtual sensor. 
However, the plate will not be moved away from the 
sensor, but turned around its vertical axis, starting with  
-90°, thus parallel to the virtual beam. On every 
simulation step, the object is turned by 0.5° up to 90°. 

The resulting SNR is stored and plotted by MATLAB. 
For the reflectivity coefficient, a value of 0.8 is chosen. 
The result is shown in Figure 5. 

 
Figure 5 Plot of the SNR value depending on varying 
incident angles  
 
This experiment also shows a plausible behavior of the 
Lidar model. For entrance angles approaching 90° and  
-90° the SNR value drops towards zero. At the incidence 
angle of 0° the SNR Value is at its maximum. This is 
consistent with the Lambertian reflection model, and thus 
the model can be considered valid for this experiment.  
 
Both tests show realistic behavior for the sensor. Minor 
inaccuracies are caused by an inaccurate 
parameterization. Nevertheless, the model is used for 
further processing as described and parameterized. In 
future projects, the parameterization and validation of the 
sensor in comparison to the physical sensor could be 
taken up again. 
  

Distance Reflectivity SNR 

150 m 10 % 4.5 

100 m 10 % 15.1 

150 m 80 % 24.5 

200 m 80 % 10.4 
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3. COMPLEX VIRTUAL TEST ENVIROMENT 
 
The main issue of this paper is the analysis of Lidar 
signals under consideration of the dynamics of a real 
vehicle. Therefore, in addition to the Lidar model, a 
realistic urban environment and a physically correct 
vehicle model are required. Moreover, a suitable 
communication is required for the exchange of data 
between the individual sub-models. Furthermore, the 
generated Lidar point clouds including the associated 
metadata need to be exported. The presentation of the 
sub-models and the communication strategy is provided 
in the following sections. 
 
3.1. Virtual Urban Envorinment 
 
The requirements for the virtual city model are high, 
since the Lidar models uses the surface normal of the 
geometries for the calculation. Furthermore, the objects 
placed in the virtual environment must be arranged 
realistically according to a natural city scene. These 
objects include buildings as well as vehicles, pedestrians, 
road signs, lane boundaries, trees and other street 
furniture. Since the influence of vehicle dynamics will 
also be a part of the study, the topography of the terrain 
is also an important criterion for the urban model. In 
order to represent as many of these objects as possible, 
the cityscape is modelled on the basis of a real role model. 
The city of cologne serves as a model. The scenery is 
based on the surroundings between Cologne's main 
railway station and the river Rhine. This scenery is well 

suited as it contains many pedestrian crossings and 
interactions between different road users. All 
measurements are adopted from the real environment. 
The dimensions as well as the optics of surrounding 
buildings are realistic. Curbs, lantern trees and bins are 
positioned as realistic as possible and their appearance is 
adapted to the real worlds objects. Even if the optical look 
is secondary for the computation of the Lidar model, as 
it is reduced to the objects reflectivity, the virtual test 
environment is enriched by highly realistic textures. This 
will also enable the testing of camera-based sensor 
technology in later work. The generated virtual 
environment is visualized in Figure 6. 
 
A major feature of the environment are the pedestrian 
dummies. These are represented by high quality 3D scans 
of real people and also animals in natural, real life poses. 
Each 3D-model consists of 30,000 up to 200,000 faces, 
depending on the complexity of the geometry. This is 
sufficiently accurate to use the surface normals for the 
calculation of the Lidar model. Figure 7 shows an 
example for a pedestrian dummy represented by 100,000 
faces with and without textures. It is obvious, that the 
model is not only realistic because of its textures, the 
geometry itself is in a high and smooth quality. The 
virtual city model thus has all necessary features for 
testing the implemented sensors. However, an accurate 
model for the vehicle movement is still missing. This will 
be the topic of the next section. 
 

Figure 6 Visualization of the complex urban virtual test environment. 
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Figure 7 Comparison of a pedestrian dummy represented 
by 100,000 faces with and without texture. 
 
3.2. Vehicle Dynamics Simulation 
 
For the testing the of virtual Lidar model the accurate 
simulation of the vehicle dynamics is an important issue. 
The vehicle movements like the pitching and rolling have 
a significant influence on the view of the sensors. 
Therefore, a vehicle model is needed that has sufficient 
accuracy to represent the realistic vehicle movements and 
still remains real-time capable. The implementation of 
the vehicle model takes place in MathWorks MATLAB 
Simulink. The vertical dynamics of the vehicle is 
modeled by a multibody system. It is composed of five 
bodies, representing the cars chassis and the four wheels. 
The lateral dynamic is simulated by a double-track model. 
Additional sub models represent the influences of driving 
and braking forces and of the tires depending on their slip 
angle. Moreover, a contact excitation is implemented at 
the wheel contact patches in order to be able to represent 
the influence of the topography in the virtual scenery. An 
overview of the model used given in Figure 8. 
 

 
 
Figure 8 Representation of the vehicle model and its sub 
models 
 
The model can be steered either manually by a user or by 
an automated driver model. The driver model is also 
implemented in Simulink. It uses target trajectories to 
follow a pre-defined path. These paths are created in the 
Unreal Engine and exported to Simulink by a defined 
number of waypoints, depending on the paths length. The 
algorithm is based on a pure pursuit path-tracking 
algorithm like presented in (Samuel, 2016). It uses look-
ahead points in front of the car to follow the target 
trajectory permanently. The output of the controller is 
used as input for the vehicle steering. No further 
description of the vehicle model will follow at this point, 
since the elaboration of the model is not the topic of this 
work. It is only used to simulate the movement of the 
artificial vehicle. The vehicle is parametrized as a heavy 
SUV, as large body movements are to be expected in this 
vehicle class. 
 
3.3. Model Communications 
 
The previous sections show a detailed model for the 
simulation of Lidar data in a virtual environment. 
Additionally a complex virtual city model and a vehicle 
model to simulate the vehicles dynamics were presented. 
All these sub models are described individually so far. 
For fully comprehensive testing, an interaction between 
these models needs to be enabled. To be independent of 
the performance on a single computer system, the 
computations of the vehicle model and the virtual 
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environment are to be decentralized. The communication 
has to be bidirectional, since the vehicle model needs 
information from the scene and vice versa. Before a 
communication can be established, it must be clear which 
data volumes are to be transmitted. The expected data and 
their size are summarized in Table 4. 
 
Table 4 Data to be transmitted between the Unreal 
Engine (UE) and MATLAB 

Data Quantity Direction 
Vehicle 
Coordinates 

30 Float Values 
à 120 Bytes 

MATLAB à 
UE 

Contact Patch 
Coordinates 

4 Float Values 
à 16 Bytes 

UE à 
MATLAB 

Lidar Results 
 
Depending on 
Configuration 

UE à 
MATLAB 

 
It turns out that limited amounts of data are expected for 
the height coordinates and the vehicle positions. Only the 
amount of Lidar data to be send is not constant. For the 
Lidar sensor of Valeo, described in Section 2.4 an 
amount of 2,320 points can be detected at maximum. For 
every point, three coordinates and the SNR value need to 
be sent to MATLAB. If each value is stored and sent as a 
floating point variable, 37,120 bytes are used. The 
amount of data allows the usage of the User Data 
Protocol (UDP), since its maximum payload size is 
65,507 bytes. UDP is a connectionless network protocol 
using the IP layer. It provides no guarantees for the 
delivery of data packages. Losses are possible. (Fairhurst, 
2008) Since the sending on data is done in a much higher 
frequency, than the need to receive is, package losses are 
irrelevant in the given implementation. The protocol uses 
so-called sockets, defined by a computers IP-Address and 
a port for the communication. For the transmission of the 
data summarized in Table 4, it is practicable to define a 
UDP socket for each Datatype. Hence, three UDP sockets 
are used. The data transmission takes place in a worker 
thread, running at a higher frequency than the simulation 
of the model itself. Thereby it can happen that the same 
data is sent several times. However, this means that 
MATLAB and the Unreal Engine do not need to be 
synchronized. At the start of each simulation step, the 

vehicle coordinates received from MATLAB are used to 
position the vehicle as well as its wheels at the specified 
location within the Unreal scene. Depending on this new 
location, the computation of the Lidar Model is executed 
and the data are stored in arrays as described before. After 
that, the new height coordinates of the vehicles tire 
contact patches are determined and stored. As with the 
Lidar model, a Linetrace is used to obtain the height 
coordinates, starting at the wheel centers. The generated 
data are used for transmission until new data are provided 
with the next simulation step. A test confirms the error-
free operation of the model network without major 
latencies in real time.  
 
4. INVESTIGATION OF THE LIDAR DETECTION 
ON A SPEED BUMP 
 
In the following sections, the previously developed and 
implemented model network is used for an exemplary  
analysis of the detection behavior of a Lidar sensor on a 
typical inner-city speed bump with an pedestrian crossing. 
In this scenario, large body movements of the test vehicle 
are to be expected. At the same time the permanent 
detection of pedestrians in mandatory. The investigation 
should clarify whether dangerous borderline cases of 
detection are to be expected with the combination of 
different driving speeds and pedestrian positions.  
 
4.1 Test Setup 
 
As mentioned before, the tests for the Lidar detection are 
to be carried out on a typical inner-city speed bump as 
visualized in Figure 9. However, the speedbump is not 
yet to be found in the scenario. As the influence of the 
driving dynamics on the Lidar is also tested, it is 
desirable that the topography of the terrain is not flat. 
Hence an artificial speedbump is placed into the scene. It 
is positioned before entering a roundabout on a road with 
a slight incline of 2.9 %. The elevation has a height of 
200 mm and a length of 20 m at the top. The ramp of the 
bump has an angle of 10°. The alignment is adapted to 
the gradient of the road. For the investigation, 12 
identical passenger dummies are placed on the bump. 
The measured test person is 1.75 tall and have a natural 

Figure 9 Testing concept for the investigation of the Lidar detection 
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pose found in the cityscape. In order to test not only the 
detectability of large pedestrians, there are also 12 dogs 
placed in the scenery next to each pedestrian with a 
height of 0.75 m. The dummys are positioned laterally 
offset at a distance of 2 m from each other.  The height 
coordinated of the dummies are adjusted to the slope of 
the terrain so they stand on the roads surface. The final 
Test setup within the virtual environment is visualized in 
Figure 10. 
 

 
Figure 10 Test setup within the virtual scene 
 
4.2 Test Execution 
 
For the execution of the test series, the Lidar model and 
the vehicle model are parametrized as described in 
Section 2.4 and Section 3.2 respectively. The setup 
represents the Valeo Scala 3D Laser Scanner fitted on a 
heavy SUV. For the execution of the tests a spline-path 
for the automated steering on the vehicle using the 
implemented pure pursuit controller is defined and 
exported to MATLAB. The vehicle will drive up the road 
towards the roundabout and pass the speed bump on its 
way. The recording of the signal is triggered two meters 
in front of the bump. The tests will be executed iteratively, 
starting with a vehicle speed of 5 km/h. The velocity is 
raised by 5 km/h on every cycle, up to 50 km/h. The 
results of the Lidar are stored with a frequency of 25 Hz, 
corresponding to the real Lidars scan frequency 
(Hexagon, 2021). The stored data are sent to MATLAB 
for further analysis and visualizations.  

5. TEST RESULTS AND EVALUATION 
 
Based on the recoded raw data the evaluation of the 
executed tests take place in the following section. First 
the way to achieve results is explained. This includes 
the data processing and the visualization on the results. 
After that, an analysis of the results is then carried out.   
 
5.1 Data Processing and Visualization 
 
As already mentioned, the data processing takes place in 
MATLAB. The starting point are four matrices, three for 
the determined coordinates of the Lidar and one that 
containing the corresponding SNR values. Taking into 
account the findings from section 2.4, a simple method is 
used to consider the SNR values. According to the Tables 
2 and 3 all identified points with an SNR of 5 or less, 
corresponding with a TPR of 10 %, are neglected. For all 
points with a SNR between 5 and 20 half of the data 
points are deleted at random, to artificially simulate the 
TPR of 50 %. All data with a SNR of 20 and above are 
considered in their entirety. The processed data are 
plotted in a next step using a three-dimensional, rotatable 
Cartesian coordinate system. The visualization is 
designed to view the results for each step of the Lidar 
simulation individually. Figure 11 shows an example of 
the data-visualization at the trigger point with a velocity 
50 km/h. 
 

 
Figure 11 3D-Plot of the processed Lidar data at the 
Triggerpoint with 50 km/h.    
 
In this Figure, almost all determined points are visualized. 
Many of the surrounding objects can be identified, 
including the pedestrians. The individual models, 
especially the dogs can hardly be distinguish. In order to 
analyze the area of interest, a plot reduced in size and 
viewed from the top suits the demands better. The results 
are shown in the Figures 12 to 15. The plots represent the 
signals of the Lidar received at a vehicle speed of 
30 km/h at different frames. Each frame represents a time 
step of the simulation corresponding to the scan 
frequency of 25 Hz.  
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Figure 12 Plot of the processed Lidar Data at the trigger 
point with 30 km/h 
 

 
Figure 13 Plot of the processed Lidar Data at the 
simulation frame 13 with 30 km/h 
  

 
Figure 14 Plot of the processed Lidar Data at the 
simulation frame 15 with 30 km/h 
 

 
Figure 15 Plot of the processed Lidar Data at the 
simulation frame 23 with 30 km/h 
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Figure 12 shows, that all road user models can be 
detected and distinguish by the Lidar at the first frame, 
when the vehicle is two meters in front of the speed 
bump. At frame 13, visualized by Figure 13, the vehicle 
is at a position 4.3 Meters from the Triggerpoint. All dog 
models disappear from the field of view. The pedestrians 
are still visible. Two frames later, visualized in Figure 14, 
the pedestrian 11 and 12 also disappear. The number of 
points recognizing for the dummys 8 to 10 is significantly 
reduced. Figure 15 shows the data captured at the 23rd 
frame, when all disappeared objects are within the field 
of view again. The models one to three are not visible 
because the virtual car already passed them. 
 
Since the figures only show the data for the test with a 
velocity of 30 km/h and it is not practical to show all 
determined plots at this point, the results of the data 
analysis are summarized in the Figures 16 and 17. The x-
axis show the test velocities, the y-axis show the range 
the vehicle moves while the respective object is out of the 
view of the Lidar sensor. This value is computed using 
the vehicles velocity and the number of frames, the 
respective object is invisible. Only the results for the 
objects that disappear from the field of view of the Lidar 
in the meantime are shown.  
 

 
Figure 16 Visibility of the pedestrian dummies by the 
virtual Lidar for different test velocities 
 

 
Figure 17 Visibility of the dog dummies by the virtual 
Lidar for different test velocities 
 

5.2 Evaluation of Results 
 
Now, based on the processed and visualized data of the 
last section, an evaluation of the results is carried out. 
Both, the physical behavior of the Lidar sensor as well as 
the vehicle dynamics and its influence on the road users 
visibility are discussed. 
 
It is obvious that due to the limited size of the scenery 
under consideration, only a small fraction of the Lidar 
points determined is omitted. 0.1 % of the data points 
recoded within a range of 30 Meter in front on the test 
vehicle have a SNR smaller than five, 1.5% have a SNR 
smaller than 20. Nearly all removed points lie behind the 
area of interest where the dummies are located. The few 
points with a low SNR could be due to large entry angles 
of the Lidar beams on the wall surfaces in the scenery. A 
snapshotof the virtual reality, visualized in Figure 18, 
confirms the findings.  
 

 
Figure 18 Visualization of the SNR values within the 
scenery 
 
It is recognizable that all the detected Lidar points, 
representing the road users, are colorized in green. This 
confirms the high SNR values. Otherwise, the points 
would be colorized orange to red. This shows, that the 
influence of the physical behavior of the used virtual 
Lidar under the given test conditions do not have a major 
influence on the results. Further test could use the 
implemented model to analyze the detection behavior in 
harsh weather conditions like rain, fog and snow, by the 
manipulation of the atmospheric transmission coefficient. 
 
If a closer look is taken at the simulation of driving 
dynamics, it is noticeable that its effects on the results are 
much greater. In the last section the vehicle movements 
have already been described. Based on the analysis of 
every recorded frame at all test velocities the Figures 16 
and 17 were extracted. The results are now analyzed. A 
closer look at Figure 16 shows, that the influence of the 
vehicle dynamics on the Lidar signal is significant. At 
5 km/h the pedestrian dummys are visible all the time. 
Even if the number of recognized data points for dummy 
11 and 12 is reduced, since only their heads gets hit by 
the Lidar, they are still visible. With a raising velocity the 
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number of temporary invisible dummies increases. Also 
the distance the vehicle travels whilst the objects are 
invisible raises. This is due to the inertia of the vehicle, 
which causes it to move further upwards after driving 
onto the ramp. For dummy 12 the maximum is at a test 
speed of 35 km/h. After that, the value decreases again. 
With raising velocities, the rear axle hits the ramp earlier, 
hence the upwards movement is stopped earlier. This 
shows the great influence the vehicle dynamics have on 
the detection behavior of the Lidar. For the dog models 
the results are quite different. The values fluctuate much 
less and are at a fundamentally higher level of 3.5 meters 
for the vehicle movement. This is due to the low position 
of the dogs. To recognize them, the vehicles body and 
thus the alignment of the Lidar needs to be nearly parallel 
to the ground. Through this required parallelism, all 
objects are recognized at almost the same time. It can be 
seen that if the influence of driving dynamics had not 
been considered, this detection gap would not have been 
identified. In a real environment, this test situation could 
cause serious accidents. Even at a low vehicle speed of 
5 km/h the car moves 3.5 meters without recognizing any 
of the dogs 4-12. If a dog or even a child with the same 
height would run in front of the car at the moment it 
enters the bump, it is questionable if the road user get 
detected. Further tests could be dedicated to this question. 
A dynamic scene with time controlled objects crossing 
the street could answer those questions. Also the 
influence of a potential sensor fusion with a camera could 
be tested. Automotive cameras are also bound to the 
vehicles body movements It is questionable if the camera 
also loses sight of the objects.  

6. CONCLUSION  

The paper shows that current Lidar simulation models 
have shortcomings when combining vehicle dynamics 
simulation and physical Lidar modelling. Hence, a 
raytracing based approach is presented to compute the 
fraction of a sent laser signal impinging on the sensor 
again. In addition, the noise powers acting on the system, 
consisting of the dark current and the sun-induced noise, 
are computed and used to form the SNR. This value 
makes it possible to make a statement whether a point is 
recognized. A verification of the model shows plausible 
results compared to the real sensor. Additionally a 
vehicle dynamics model is introduced. It uses a two track 
model and a multibody system to accurately simulate the 
vehicles movements in interaction with the realistic 
virtual environment. An investigation of a typical inner-
city scenario shows, that this type of Lidar simulation 
makes sense. Different road users are out of view of the 
Lidar for up to 3.8 m, whilst the vehicles crosses a speed 
bump, depending on their position and the test vehicles 
velocity. At the same time it shows, that the influence of 

the physical modeling of the Lidars detection behavior is 
small. In the considered scenery, nearly all laser beams 
generate a sufficient receiving signal. Further 
investigations could take a closer look at the physical 
Lidar model. Influences of different environmental 
properties should be tested. It is to be expected that 
fluctuations in the atmospheric transmission due to rain, 
snow, fog or dust lead to a reduced receiving power. In 
addition, different sun intensities could be tested. The 
current model is based on the assumption that all surfaces 
are Lambertian reflectors. In real environments also 
specular reflecting objects like glass panes or lacquered 
surfaces can be found. Therefore, it makes sense to 
implement the case of specular reflections into the model. 
In addition, the connection of the vehicle and the Lidar 
model could be topic of further tests. The described 
scenario already shows a major influence on the results. 
Further scenarios could be cornering and turning with 
different speeds or the crossing over crests. Furthermore, 
dynamic scenarios would be interesting. Related to the 
bump it could be tested, if a child running in front of the 
car is detected. At this point, a look at the fusion of 
several sensor technologies would make sense. Finally, 
in order to enable a hardware in the loop testing, the 
generated data could be feed into evaluation algorithms 
or real Lidar systems.  
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