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Abstract 
 
Recently, virtual realities and simulations play important roles in the development of urban traffic infrastructure. By an 
appropriate abstraction, they help to design, investigate and communicate inner-city development processes. Especially, 
to investigate interactions between infrastructure and future mobility participants, a valid virtual model is essential for 
functionality and reliability. 
The aim of this study is the investigation of interactions between a virtual infrastructure model and virtual sensor mod-
els of highly automated mobility systems. The overall system consists of a georeferenced virtual city model and proba-
bilistic sensor models, which are part of an automated vehicle model. The virtual environment comprises a comprehen-
sive, virtual 3D model of a representative German inner-city scene, considering specific height coordinates. The proba-
bilistic sensor models represent real radar and lidar sensors and comprehensively replicate their physical functionality 
in a virtual environment. Considering different levels of detail, the realistic representation of physical effects of the 
virtual city model on the virtual sensors is investigated. The investigated scenarios are derived from representative 
urban traffic situations. The complexity as well as the level of information of the virtual city scenarios is iteratively 
increased. Subsequently, the effects on the model validity of the overall system is checked and analysed. 
The results show that the developed virtual environment performs well for different levels of detail of representative 
virtual traffic scenes. In addition, the selected modelling depth is very suitable for the high-performance investigation 
of interaction between virtual urban environment and virtual autonomous vehicle. 

 
1. Introduction 

 
Simulation methodologies play an important role in the 
development of modern mobility solutions. Thereby, 
mobility is often defined by technical vehicle solutions. 
In this paper the interaction of urban traffic infrastruc-
ture and technical mobility solutions is investigated. 
The aim is to generate information about how urban 
traffic infrastructure has to be designed to enable safe 
and future oriented automated mobility. Therefore, a 

virtual traffic infrastructure is developed, which in-
cludes mobility solutions as well as urban infrastruc-
ture. The structure of this paper is shown in Figure 1. 

 
Figure 1: Structure of the virtual traffic infrastruc-
ture 



2. Virtual (City) Environment 
 
The virtual environment is separated into the geome-
try-based illustration of the city and the functional 
based implementation of traffic flows.  

 
Figure 2: Structure of the Virtual Environment 
 
2.1 Virtual City Model 
The used virtual city model bases on a detailed laser 
scanned model of the city geometries. They include all 
kind of georeferenced parameters considering position, 
orientation and general dimensions. To decrease the 
amount of data und increase the quality of the surfaces, 
the laser-scanned data are reduced and retopologized 
first. Therefore, especially the level of detail is de-
creased and just the general city structure is captured. 
A example is show in Figure 3. 

 
Figure 3: Reworked City Geometry Model 
 
For the further procedure, the buildings, which are 
shown in the Figure 3 are separated out of the city 
geometry model and reworked individually up to a 
minimum detail level of Figure 3.With respect to the 
level of detail of the real building, the geometrical 
information of the virtual model is added. Especially, 
sharp contours of windows and balconies have to be 
reworked to approximate the reality. Afterwards the 
individual buildings were included separately info the 
Virtual Reality (VR) environment. The included model 
is schematically shown in Figure 4. 

 
Figure 4: Geometrical building models in VR 
 

In this model, each building is individually rebuild and 
textured to look like the real one. Additionally, the 
virtual buildings are fitted with meta-data to include 
specific information into the model. Afterwards, each 
building is positioned individually, whereby the virtual 
city model is recreated like the real city. In the same 
way, the city furniture is modelled and included into 
the city model in VR. Examples for these textured 
objects are shown in Figure 5. 

 
Figure 5: Examples for city furniture in VR 
 
Finally, the virtual city model is illuminated by virtual 
light effects. Therefore, a virtual light model is devel-
oped. This determines the individual interactions of 
lights and shadows depending the direction of the light 
sources in the scene. By using the virtual light model, 
individual scenarios like the sunset, a foggy day or the 
nocturnal darkness can be created. 
 
2.2 Virtual Traffic Model 
To supplement the virtual city environment, the geo-
metrical city model is augmented by a virtual traffic 
model. Therefore, on the one hand, the georeferenced 
model is textured to look like real street illustration and 
on the other hand, virtual vehicles, including trajecto-
ry-planning algorithms, are added.  
For texturing, especially two main aspects are repre-
sented. First, the traffic lines at the street-surface, sec-
ond, the road composition are rebuild. An exemplary 
illustration of a virtual road is shown in Figure 6. It is 
important that the road signs and signal lights are cor-
rectly designed and placed in a country-specific man-
ner, so that they can be identified by the sensors of the 
vehicles. 
 

 
Figure 6: Exemplary illustration of a virtual road 
 



To generate target trajectories for the simple virtual 
vehicles, the spline-path-follow-methodology is used. 
Therefore, the geometrical road is attributed by a 
spline. It is formed by connecting points between 
which the spline is interpolated. Thereby, each dot has 
three coordinates to specify its position. The course of 
the spline is generated depending on the previous and 
following dot, which smooths the spline course. Addi-
tionally, the spline course can be adjusted manually. 
Figure 7 shows a spline development based on dots. 

 
Figure 7: Schematically course of a spline path 
 
By adding the spline-paths as target trajectories for the 
automated virtual vehicles, the virtual traffic is initial-
ized. The virtual vehicle dynamic is based on a simpli-
fied vehicle dynamic model by the Nvidia PhysX En-
gine in the Unreal Engine. The trajectory controller is 
set up as a look ahead control. The steering angle is 
calculated by determining the difference between the 
look ahead point in front of the virtual vehicle and the 
target trajectory. Additionally, the vehicle velocity can 
be specified to complete vehicle trajectory design. The 
throttle input is calculated according to this speed limit. 
Additional to the speed limit, each spline contains 
references to possible succeeding splines. When a 
vehicle reaches the end of a spline, a succeeding spline 
is randomly chosen and the vehicle will follow a new 
spline. Each new spline contains the rules like, speed 
limits and possible spline changes. 
 
Furthermore, the spline paths can be adapted by traffic 
functionalities like traffic lights. Methodically, bound-
ing boxes around the objects are used for the interac-
tion between the vehicles and the relevant traffic ob-
jects. If a vehicle bounding box crosses a traffic objects 
bounding box, for example a traffic light, a reference 
of the traffic light controller is passed to the controller 
of the vehicle. This reference contains the current state 
of the intersection e.g. the state of the traffic light. The 
controller of the vehicle then decides, depending on 
this state, whether it should continue driving or break 
and wait for the traffic light. A schematically illustra-
tion of an intersection traffic light scenario is shown in 
Figure 8. 
 

 
Figure 8: Signal light intersection 
 
In summary, the virtual city environment consists of a 
georeferenced inner city model attributed by an automat-
ed traffic model. In connection, a comprehensive urban 
traffic simulation is set up, which schematically repre-
sents real inner city traffic situations. 
 
3. Virtual Vehicle  
 
The interaction between automated mobilities and city 
infrastructures is an important issue in current automo-
tive research activities. Hence, the following section 
will introduce an innovative virtual vehicle model for 
the representation of automated vehicle functionalities. 
The goal is the simulation of realistic vehicle behaviors 
in urban traffic situations. Figure 9 shows the general 
structure of the used and implemented model network.  

 
 

 
The core of the research environment is a highly au-
thentic, visually realistic, georeferenced virtual reality 
city scene. To enable the mentioned interactions, the 
model is augmented by two submodels. A dynamic 
pedestrian avatar model, steered by a real-time network 
motion capturing and a vehicle model, including a 
physically correct dynamic model and three sensor 
models. The vehicle avatar serves as an interface to 
implement real vehicle functions into the scene. Its 
implementation is done in a closed loop communica-
tion between MATLAB and the Virtual Reality engine 
via network. Finally, three sensor models, implemented 
in the virtual city model, aim to simulate the recog-
nized surrounding data by the vehicles sensors.  
 
The visualization and potential further processing of 
the Radar and Lidar datasets takes place in MATLAB. 
The data transmission is done by network protocol 

Figure 9: Model structure of the virtual vehicle 



again. The aim is not only to simulate the data in a high 
realistic way, but also to create a decentralized struc-
ture that makes it possible to test complex scenarios 
independent of the location. The following sections 
show the detailed structure and the implementations of 
the described models. 
 
3. 1 Vehicle Dynamic Model 
 
To represent the real vehicles behavior of the ego vehi-
cle, it is necessary to simulate the influences of the 
vehicle dynamics depending on the scenes environ-
mental influences in a realistic way. Caused of real-
time claims, it is important to find a complexity level 
that represents the cars movements in a sufficient accu-
racy, without taking too much computation resources. 
Most virtual reality environments, like the used Unreal 
Engine, aim not to implement physical simulation 
models. Therefore, the determination of the vehicle 
dynamics model is built in MATLAB Simulink. It is 
composed of different sub models, as shown in Figure 
10. 
 

 
Figure 10 Vehicle dynamics model with sub models 
and steering input  
 
By using a five body model, the vehicle vertical dy-
namics are simulated. The body’s represent the vehi-
cles main masses, consisting of the chassis and the four 
wheels. The wheels are stimulated by a foot-point 
stimulation depending of the surface-condition of the 
street. This allows the interaction of the model and the 
virtual city environment. A double track model simu-
lates the lateral dynamics of the vehicle. Additional 
models also represent the drivetrain and the slip angle 
dependency of the tires as well as environmental influ-
ences like rolling, air and gradient resistances.  
 
The steering of the model can either be controlled 
manually by a user input or automated by a driver 
model. For the manual steering, all common input 
devices can be connected to Simulink. This allows the 
user to move freely within the virtual scene and test the 
model network in various scenarios. For a better repro-
ducibility, an automated driver model is implemented. 
It uses pre-defined spline paths, created in the virtual 

city environment and exported to MATLAB. The im-
plemented path following algorithm bases on a pure 
pursuit controller, like described in (Samuel, 2016). It 
controls the vehicles steering input by following look 
ahead points in front of the car lying on the defined 
spline path. Theoretically, a dynamic path depending 
on the current driving state could replace the prede-
fined spline path in MATLAB. Since path-planning 
algorithms are not part of the current work, this topic 
will not be further discussed. A vehicle avatar in the 
Unreal Engien connects the simulation model with 
vehicle geometries in the urban city environment. By 
connecting these models, a highly efficient Co-
Simulation is realized.  
 
3.3 Lidar Sensor Model 
 
A typical environmental sensor for vehicle auto-
mation is the Lidar sensor. Therefore, in the fol-
lowing chapter, a Lidar sensor model for the ap-
plication in VR is introduced. The technology 
uses laser beams to scan the surrounding. Multiple 
beams are sent either one after the other or at the 
same time. Depending on the transmission charac-
teristics, the systems can be divided into single 
beam and multi beam scanning Lidars. Since the 
following model aims to simulate the physical 
properties of a Lidar, the scanning principle is not 
relevant for further considerations. It is only im-
portant that a possibility is provided, to control the 
shape and resolution of the Lidar field. For each 
sent Laser beam, time the light takes to travel to 
the target object and back to the sensor is deter-
mined. According to (Winner et al, 2016) this can 
be used to compute the distance as described in 
Equation 1. 
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In this equation, c0 represents the speed of light, tof is 
the duration the light travels and d is the distance to the 
target object. Since it is not possible to simulate the 
speed of light in a virtual environment, a substitution 
model is needed. Therefore, the so called linetracing or 
raytracing methodology is used. These virtual rays are 
defined by a starting point and an endpoint. If a ray hits 
an object within the scene, predefined information like 
the impact location were returned. To enable the cov-
erage corresponding to a real sensor, the field in front 
of the virtual car is scanned at frequently. The azimuth 
and the elevation angle define the area of interest. For 
the discretization of the field, the angular resolution of 
the sensor in the respective direction is used. With that, 
the complete azimuth range is scanned, as shown in 
Figure 11. Then the elevation angle is incremented and 



the azimuth angle get scanned again, until the whole 
field is covered. 

 
Figure 11 Discrete scanning of the Lidar field 
 
If a ray hits an object, an algorithm is executed, com-
puting the relevant data of the Lidar recognition. The 
aim is to determine whether a point is detected by the 
Lidar. An important value for this decision is the signal 
to noise ratio (SNR), as defined in Equation 2.  
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Here Pr represents the power received from the Lidar 
and Pn is the sum of the induced noise powers. The 
higher the SNR value, the greater the probability of 
detection. Corresponding to (Winner et al., 2016), 
(Kim et al., 2013) and (Kernhof et al., 2018) and 
through additional adaptations and assumptions the 
fraction of the received power can be expressed by 
Equation 3. 
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In this equation, ρt is the reflectance coefficient of the 
target object; Ar represents the receiving lens area; τ 
stands for the atmospheric transmission coefficient; ηsys 
are the summarized system losses; θi is the incidence 
angle of the light beam on the objects surface and QV 
stands for the divergence of the shot beam. For the 
implementation of this equation into the virtual reality, 
most of the parameters can be passed as variables. 
Only the incidence angle and the targets distance de-
pends of the linetraces. The distance can directly be 
read out of the linetrace results, the incidence angle can 
be computed by equation 4 using the incidence vector i 
and the surface normal n at the impact point. 
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Besides the received power, the noise powers acting on 
the Lidars receiving systems need to be determined. 
They are mainly composed of the sun induced noise 
and the dark current noise. The sun induced noise is 
generated by sunlight illuminating the targets surface 
and impinging the sensor. Equation 5, according to 

(Kim et al., 2013), can compute the power of this noise 
source. 
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ESi represents the illumination intensity of the sunlight, 
Bλ is the electromagnetic bandwidth of the receiving 
unit and IFOV is the instantaneous field of view. In 
case the same optics for receiving and transmitting the 
signals is used, the IFOV corresponds to the beam 
divergence. Thermal effects of the photo element gen-
erate the dark current noise. For the computations of 
this noise, Equation 6 is used. 
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Here, ID stands for the dark current and ℜmax represents 
the maximum sensitivity of the photo element. Both 
parameters can usually be found in the datasheets of 
photo elements. By this, it is now possible to compute 
the signal to noise ratio and make a decision whether a 
point gets recognized or not. The computation is com-
puted for every ray hitting an object within the scene.  
 
At every simulations step different metadata like the 
SNR-value and the determined powers are generated. 
However, it is problematic, that the coordinates of 
captured points are shown as perfectly accurate values. 
Real Lidar sensors have a limited resolution due to the 
time capturing system, amplifications and analog to 
digital conversions (Kernhof et al., 2018). Since com-
mercial sensors differ in capturing technologies and 
used hardware, it is not feasible to model these inade-
quacies accurately. Instead, the influence of the acting 
inadequacies are displayed. In the given case, this is 
done by multiplying the resolution, provided by most 
sensor manufacturer, with a white Gaussian noise and 
adding the result to the distance value. 
 
Therefore, all relevant data are known and ready for 
further processing. To enable this, the values are stored 
in arrays and sent to MATLAB by an UDP communi-
cation. To generate a practical reference, the sensor is 
parametrized according to the Valeo SCALA 3D Laser 
Scanner, a commercial serial product for ADAS appli-
cations. The determined values shown in Table 1 are 
mainly taken from the sensors datasheet (Hexagon, 
2021). All missing values are adopted from the 
datasheet of a typical photodiode (Hamamatsu, 2018) 
and the literatures (Weber, 2018) and (Kim, et al., 
2013). The environmental parameters like the atmos-
pheric transmission coefficient or the irradiance of the 
sun are set dynamically within the virtual scene, de-
pending on the particular study.  



Table 1 Parametrization of the virtual Lidar ac-
cording to the Valeo Scala sensor 

 
3.2 Radar Sensor Model 
 
A further typical environmental sensor for ADAS 
application is the radar Sensor. It is commonly used for 
automotive since it is comparatively cheap, provides a 
large detection distance and is resistant against envi-
ronmental influences. The virtual environment of this 
paper aims to simulate all necessary environmental 
data for the interaction of autonomous vehicles and 
driving functions with pedestrians in real time. Hence, 
a probabilistic radar model is used. It provides all rele-
vant data in an object list and simulates the phenomena 
of the radar technology, without performing a full 
physical simulation.  
 
The implemented model is largely based on the proba-
bilistic radar model presented by (Muckenhuber, et al., 
2013) and is extended by several assumptions. To 
represent the model as realistic as possible, the real 
commercially used radar sensor Continental ARS 408 
serves as a reference. (Liebske, 2015) provides the 
Datasheet. The execution of the model takes place in 
two steps, as shown in Figure 12.  
 

 
Figure 12 Overview of the probabilistic radar mod-
el execution 
 
In a first step, the so-called Ground Truth Data need to 
be generated. It is a dataset, containing all possibly 
detectable objects in the sensors field of view and the 
corresponding metadata. After the perfect data are 
generated, the second execution step manipulates the 
dataset with respect to measurement errors, resolutions 
and inaccuracies. Hence, the phenomena of the sensor 
are mapped. 
 
For the generation of the Ground Truth all relevant 
objects lying in the detection area of the sensor within 
the scenery need to be captured. The datasheet of the 
sensor provides the sensing areas displayed in Figure 
13. 

 

Figure 13 Sensing areas of the Continental ARS 408 
(Liebske, 2015) 
 
Caused of inner-city applications, only the near sensing 
area needs to be modeled. As with the previous de-
scribed Lidar model, a linetracing method is used to get 
the relevant objects, similar to Figure 11. However, for 
this probabilistic model it is not necessary to get the 
data of the trace itself. Instead, the objects are passed 

 Symbol Value Unit 

Azimuth Angle ϕtot 145 deg 

Elevation Angle ϑtot  3.2 deg 

Azimuth Resolution Δϕ 0.25 deg 

Elevation Resolution Δϑ 0.8 deg 

Distance Resolution ΔR 0.1 m 

Radiated Power Pt 80 W 

Lens Area Ar 0.0007 m² 

Beam Divergence / 
Instantaneous Field of View Qv / IFOV 0.003 rad 

Electromagnetical Receiver 
Bandwidth Bλ 2 nm 

Dark Current ID 10 nA 

Sensitivity Photo Diode ℜmax 0.5 A/W 

System Efficiency η 0.9 - 



to an array, if they are hit the first time. The angular 
resolution of the linetracing needs to be much higher 
than at the Lidar model, not to omit any object. More-
over, the detection range of the sensor is not constant 
over the azimuth angle. Hence, the detection field is 
adapted to the near sensing area as shown in Figure 13. 
 
As already mentioned, the result of the linetraces is an 
array containing all actors within the field of view of 
the virtual sensor. Since not all objects are relevant for 
the virtual sensor, the next step is the classification and 
sorting of the objects. Table 2 provides the types of the 
objects for the classification. 
 
Table 2 Object classifications for the probabilistic 
radar model 

Typ Index Color 

Car 1 Cyan 

Truck 2 Blue 

Pedestrian 3 Red 

Motorcycle 4 Yellow 

Bicycle 5 Green 

Unknown 6 Magenta 

 
Based on that, all relevant actors within the virtual 
scene are augmented by a so called tags. These tags are 
detected, if the actor is hit by a linetrace. A color is 
assigned to each class for visualization purposes. The 
object designations are predominantly self-explanatory. 
The “Unknown” class contains all geometries, that are 
generally received by the radar sensor, but without 
classification, like postboxes, street signs, advertising 
pillars and other street furniture. Objects that have no 
predefined class are omitted. In a next step, the missing 
metadata of the relevant actors are determined. The hit 
objects directly return information according to posi-
tions and orientations of the object. To become local 
coordinates in the system of the sensor, a coordinate 
transformation from the global system has to be per-
formed. Additionally, the size of the minimum sur-
rounding box, the so called bounding box, is generated 
for every found object. 
 
Finally, the ideal maximum radar cross sections (RCS) 
is missing for the recognized objects. This value gives 
an indication of how large the proportion of the re-
flected radiation energy is, that impinges on an object. 
In further processing steps the RCS value can be used 
to make a decision, if an object is recognized. As the 
objects index, the value is predefined in tags for each 
relevant actor within the scene. Since the value fluctu-
ates depending on the aspect angle, the pre-defined 
value provides the maximum possible radar cross sec-
tion. Previous works like (Degen, et al., 2021) show 
the general possibility to simulate radar cross section 
within a virtual reality engine. However, the paper also 

offers issues in real-time performance. Due to that, the 
current probabilistic model uses a pre-defined RCS for 
every object and manipulates it to get a realistic value. 
The method will be described in the further progress of 
this paper.  
 
The physical phenomena of the sensor are replicated, 
without simulating its full physics. At first, the influ-
ences of the sensors resolution and accuracy are ap-
plied to the ground truth signal as displayed in Figure 
14.  

 
Figure 14 Visualization of the data manipulation to 
simulate the sensors resolution and accuracy. 
 
The vehicle coordinate system and a theoretical target 
object are shown. The green vector represents the ideal 
and error-free position of the target, taken from the 
ground truth. To implement the resolution influences 
so called range gates are formed. The size of the range 
gates corresponds to the resolution. To sort the dis-
tance into the range gates, the length of the vector is 
divided by the resolution and rounded to an integer 
value. This results in the number of range gates. Sub-
sequently the resulting integer value is multiplied with 
the resolution again. This leads to the yellow vector. 
The effect of the measurement accuracy is implement-
ed next. This value fluctuates randomly in positive and 
negative direction. Thus, a static implementation is not 
possible. Instead the value of the measurement accura-
cy, taken from the datasheet (Liebske, 2015), is multi-
plied with a white Gaussian noise with a standard devi-
ation of one. The resulting vector, visualized in blue, is 
added to the yellow in range gates sorted vector.  
 
After the range manipulation, the next step is the im-
plementation of aspect angle and coverage effects to 
the RCS value. The principal methodology is shown in 
Figure 15. 
 



 
 

Figure 15 Method for the manipulation of the RCS 
value 
 
The manipulation is based on the assumption, that the 
maximum RCS of an object is given at its longest side. 
In Figure 15 this is represented by the yellow line. To 
simulate coverage and aspect angle influences, the 
already carried out ray traces are used. First, the first 
and the last ray trace that hit the geometry are deter-
mined for each object recognized. It is obvious that 
covered parts of the targets objects are not noticed with 
this method. The result is shown as a red line. In a next 
step, this red line is projected onto the Y-axis of the 
local sensor coordinate system. To artificially reduce 
the ground truth RCS, it is multiplied with the quotient 
of the length of the yellow line, representing the ob-
jects longest side and the length of the purple line, 
representing the visible fraction of the object. This 
completes the reduction of the RCS.  
 
According to Figure 12 the next step of the probabilis-
tic model is the object reclassification. Real radar sen-
sors classify objects on their radar signature. This is 
only possible in certain distances, depending on the 
objects type. So far, all objects get recognized and 
classified correctly. To simulate the real radars detec-
tion behavior, two thresholds are implemented. It is 
assumed, that cars, trucks and motorcycles are correct-
ly classified up to a distance of 50 m. For Pedestrians 
and bicycles, the assumed threshold is 30 m. If the 
distance of any object exceeds the threshold defined 
for its class, it gets reclassified to the “unknown” class.  
 
The last manipulation step visualized in Figure 12 is 
the implementation of false positive and false negative 
objects. With real radar sensors two phenomena can 
occur. On the one hand, objects can appear that are not 
physically part of the real surrounding. These are 
called false positive (FP) objects. On the other hand, 
objects that are physically part of the sensing area can 

stay undetected for a certain time. These are named as 
false negative (FN) objects. Both phenomena are im-
plemented in the following, starting with the FN ob-
jects. A detection probability with a value between 
zero and one is pre-defined for every object class. On 
every execution step and for every actor a pseudo ran-
dom value, also between zero and one, is generated. If 
the generated value is smaller than the detection prob-
ability, the object is added to the object list. If it is 
larger, the object gets neglected. With this, it is possi-
ble to adjust the average false negative rate for every 
object class. The implementation of false positive ob-
jects is more complex, as the objects are not only to be 
implemented, but also random positions have to be 
found for them. At a first step a value for the average 
number of recognized FP objects at every frame is 
defined depending on the object classes. Additionally, 
typically bounding box sizes are defined for every 
object class. The FP objects are added after the execu-
tion of the complete probabilistic radar model, when all 
objects with metadata reduced by the FN objects are 
known. The generation of the FP objects is done for 
every object class separately, through a loop that iter-
ates the object types. In that loop the class individual 
average number of FP objects is used to compute the 
actual number of FP objects for the respective simula-
tion step. This is done by applying a white Gaussian 
noise to the value and converting it to an integer. After 
that, a second loop is initiated for the generated integer 
value. Within that loop, the respective FP object is 
generated. The first value, that is generated for each 
false FP object is the extend. For that, the pre-defined 
average size of the class dependent bounding box is 
manipulated by a Gaussian noise. Thus, the average 
size of the bounding box corresponds to the pre-
defined value, but the individual sizes vary within a 
certain range. The same procedure is also used to gen-
erate an artificial RCS value for the respective object. 
After all metadata are created, the respective object 
gets positioned at a random position with a random 
orientation within the sensors field of view. This is 
repeated until the computed number of false positive 
objects for the object class is reached. After that, the 
Object class is incremented and the algorithm is exe-
cuted again.  
 
4. Investigation of the Virtual Traffic Infrastructure  
 
For the interdisciplinary city infrastructure planning, 
the impact of infrastructure and automated mobility is 
crucial. Therefore, a valid virtual environment, which 
enables investigation of interaction between mobility 
sensors and the traffic infrastructure is essential. In this 
chapter, the developed virtual city infrastructure is 
investigated to evaluate its quality for further applica-
tions. The base for the investigation are representative 
urban traffic scenarios, which illustrates typical chal-
lenges for ADAS sensors in inner-city environments. 
 



4.1 Crossing with urban structure 
 
Especially at urban environments, buildings and city 
infrastructure cause shadings. A typical scenario is the 
crossing, whereby urban development restricts the 
driver’s field of view. Figure 16 shows the scenario 
from different perspectives. 
 

 
  

 

 
 
The bird´s-eve view illustrates the general scene. Espe-
cially the building on the right-hand side of the ego-
vehicle restricts the field of view. The view into the 
crossing street depends straight of the distance to the 
crossing. A holistic view is only possible just before 
entering the crossing.  
Additionally, the Lidar-beam course is visualized in 
Figure 16 bottom. Next to the distance, which is shown 
by the color of the Lidar-dots, the georeferenced 
course of the virtual environment gets clear. The dots 
hit the street at a far distance in front of the ego-
vehicle.  
 
4.2 Street line with street furniture 
 
Another interesting city application for the mentioned 
investigation is the effect of street furniture to the 
ADAS sensors. The general properties of a bin or an 
advertising pillar for example are quiet related to hu-
man properties. Figure 17 visualizes a street line with 
street furniture scene.  
 

 
  

 
 
Besides to the urban structures, typical street furniture 
like bins, advertising pillars and traffic signs are in-
cluded. Additionally, the course specific of the Lidar-
sensor is shown. Thereby especially the falling course 
of the street is becomes clear. 
 
4.3 Pedestrian crossover 
 
Crossovers are the typical urban interfaces between 
pedestrians and vehicles. Here, traffic signs, other 
vehicles or buildings restrict the field of view often. 
The implementation in the virtual environment of this 
scenario is shown in Figure 18. 
 

 
 

Figure 16:  
Top: Bird´s-eye view of the scene Crossing with 
urban development,  
Bottom: Vehicle-top view of the scene Crossing with 
urban development. 

Figure 17: 
Top: Bird´s-eye view of the scene Street line with 
street furniture,  
Bottom: Vehicle-top view of the scene Street line 
with street furniture. 



 
 
Next to the roundabout, which is not focused in this 
investigation, the pedestrian crosswalk with the ap-
proaching ego-vehicle is illustrated. Additionally, pe-
destrians on and at the beginning of the crossover are 
implemented. Finally, the scenario is filled with street 
and traffic furniture.  
 
4.4 Street with structural separation 
 
The final investigation-scene is the multi-lane street 
with a structural separation of the driving directions. In 
this implementation street greenings like bushes and 
trees provide the separation (shown in Figure 19). 

 
 

 

 
 
In Figure 19 bottom, the vehicle-top view of the scene 
is illustrated. It shows the diversity of a typical inner-
city scene with a river and a bicycle and pedestrian 

sidewalk at the right-hand side and urban structures at 
the left-hand side. All lanes are divided by boundaries 
like greenings and walls.  
 
5. Analysis and Results 
 
To evaluate the suitability of the virtual city environ-
ment for the investigation of interactions between traf-
fic infrastructure and ADAS developments, the data of 
the virtual sensors are analyzed. For this reason, the 
previous investigation study is evaluated. 
 
5.1 Crossing with urban structures 
 
First, the crossing scenario is analyzed by reviewing 
the radar-sensor model data and the lidar-sensor model 
data. 
The measured data of the lidar-sensor model are shown 
in Figure 20. 

 

 
 
The plot of the lidar-sensor model shows quiet good 
results. First, the general edges of the urban structures 
are detected. Additionally, the vehicle standing on the 
left-hand side of the ego-vehicle is captured by the 
lidar. Further, the street-surface including the side-
walk-edge far in front of the ego-vehicle is perceived. 
Also, the street furniture like street lights and traffic 
signs are detected well. This is shown in the Lidar-plot 
at 20 m lateral distance and 6 m longitudinal distance. 
Additionally, the lidar detcts a short surface of the 
vehicle standing in the crossing street right-hand side 
to the ego vehicle. This can be seen at 18m longitudi-
nal axis and 11m lateral axis. Finally, the two pillars of 
the building right-hand side of the ego vehicle are 
recognized, which correlates with the illustration at 
Figure 16 bottom. The course of the lidar dots, which 
represents the field of view, includes two pillars; the 
first one is out of the detection area. 
 
Caused by the model setup, the radar sensor only de-
tects classified objects. The plot of the sensor at the 
crossing with urban development scene is illustrated in 
Figure 21. 

Figure 20: Lidar-Plot of the scenario Crossing with 
urban development 

Figure 19: 
Top: Bird´s-eye view of the scene Street with struc-
tural separation,  
Bottom: Vehicle-top view of the scene Street with 
structural separation. 

Figure 18: 
Top: Bird´s-eye view of the scene Pedestrian crosso-
ver,  
Bottom: Vehicle-top view of the scene Pedestrian 
crossover. 



 

 
 
A direct comparison with Figure 16 makes clear, that 
the consideration of the shadings due to the urban 
building is given. The vehicle standing at the begin-
ning of the crossing road is recognized with reduced 
RCS. This could be seen by the minimized classifica-
tion box around the detected object in the radar plot. 
Further, the vehicle at the sidewalk left-hand side to 
the ego vehicle is detected and classified. Additionally, 
one object in front of the ego-vehicle is received and 
not classified. The comparison with the lidar plot 
shows clearly, that this object has to be a traffic sign. 
  
5.2 Street line with street furniture 
 
To investigate the uniqueness of the street furniture 
detection, the sensor data of the Street line with street 
furniture scenario are analyzed.  
The sensor data plots are shown in Figure 22 and Fig-
ure 23. 
 

 

 
 
By comparing the results with Figure 17 especially the 
contours of the passing street becomes clear. The lidar 

plot shows the course of the street lane between 40 m 
and 50 m. A little wall and street greening border this 
part of the road. Additionally, the buildings directly 
next to the ego vehicle are detected, which is repre-
sented by straights in the plot. Furthermore, the lidar 
recognizes the diversity of street furniture in the longi-
tudinal distance between 15 m and 40 m. Despite of the 
little dimensions of for example street lights and the 
big distance to the ego vehicle, the lidar-sensor model 
receives it quite well.  
 

 

 
 
The radar sensor detects less objects. Just one vehicle 
is detected and classified. However, the functionality is 
very well. As shown in Figure 17 top, the crossing 
vehicle is just hit at a little spot of the front (see the red 
dot). The radar sensor detects it, classifies it correct 
and reduces the RCS in dependency of the received 
area. The reduction of the RCS could be seen at the 
little dimensions of the object box in Figure 23 at 40 m 
longitudinal distance to the ego-vehicle. In addition, 
street furniture is also recognized. At the right-hand 
side in front of the ego-vehicle a bin and a traffic sign 
are detected. At the left-hand side an advertisement 
pillar and a traffic sign are recognized.  
 
This examined scene shows well the individual fields 
of application of the implemented sensor models. 
While the radar sensor model returns a classified ob-
ject, the lidar only shows the object contours. The 
classification has to be done by an external algorithm. 
 
5.3 Pedestrian crossover 
 
The crossover scene is one of the most complex sce-
narios investigated. Next to the diversity of partici-
pants, the road course is falling and behind the crosso-
ver is a roundabout. The complexity becomes clear by 
consideration of Figure 24. The lidar-plot shows the 
variety of contours an individual dots, which has to be 
assigned. 

Figure 23: Radar-Plot of the scenario Street line 
with street furniture 

Figure 21: Radar-Plot of the scenario Crossing with 
urban development 

Figure 22: Lidar-Plot of the scenario Street line with 
street furniture 



 

 
 
First, the complex architecture of the building at the 
left-hand side of the pedestrian crossover stands out. 
The pillars and edges of the building are recognized 
well. Furthermore, one pedestrian at the crossover as 
well as the traffic sign in the middle of the crossover 
and the street light are detected, which could be seen in 
the lidar plot between 15m and -5m longitudinal dis-
tance and 5m and 20m longitudinal distance. Interest-
ing is the effect, that the second person at the crossover 
is shaded by the traffic sign. The sensor does not re-
ceive the person. Additionally, around 40m in front of 
the ego vehicle, the edges of a vehicle as well as the 
statue in the middle of the traffic circle are detected. 
Next, the contours of two buildings at the right-hand 
side and quite in front of the ego-vehicle are detected, 
which gets obvious by comparison with Figure 18 
bottom. Finally, street furniture like traffic signs and 
street lights as well as restaurant furniture is captured, 
which could be seen especially at the left-hand side in 
the height of the traffic circle. 
 

 

 
 
In detail, both the complexity and diversity of the lidar 
sensor results are confirmed by the radar plot data 
(Figure 25). One vehicle in the traffic circle is captured 

and classified. Additionally, one person at the pedestri-
an crossover as well as the street light are detected. 
Furthermore, the sensor captures the constellation of 
the street furniture and traffic signs at the left-hand side 
part of the traffic circle.  
 
5.4 Street with structural separation 
 
At least the sensor data of the street with structural 
separation scenario are analyzed. Like bevor, radar 
and lidar sensor data are used for the analysis.  
The lidar-plot is shown in Figure 26 and the radar plot 
is shown in Figure 27.  
 

 

 
 
In general, the lidar plot shows the course of the street 
quite well. The boundaries like the wall at the right-
hand side of the vehicle as well as the building at the 
left-hand side further back are captured well. Further-
more, the diversity of bushes and trees as well as traffic 
signs at the greening around the road are detected cor-
rectly. Conspicuous is the red line in Figure 19 bottom. 
This line, which represents the lidar beams, is illustrat-
ed in the lidar plot between 40m and 50 m longitudinal 
distance, too. It is caused by the geo-individual course 
of the road. The course of the road increases in height.  
Finally, different pedestrian contours are captured at 
the pedestrian crossover at the left-hand side in front of 
the ego vehicle (see Figure 19 top). 
 
In sum, the interpretation of the lidar plot is very com-
plex. Without the direct comparison of the scene pic-
ture, especially the assignment of little contours is 
difficult. This shows quite well, how essential the con-
nection of the different sensor information is for highly 
automated vehicle systems. 
 

Figure 24: Lidar-Plot of the scenario Pedestrian 
crossover 

Figure 26: Lidar-Plot of the scenario Street with 
structural separation 

Figure 25: Radar-Plot of the scenario Pedestrian 
crossover 



 

 
 
In this case, the radar plot shows a significantly re-
duced complexity. Mainly, the radar captures the pe-
destrians walking through the crosswalk between 25 m 
and 40 m longitudinal and around -25 m lateral in front 
of the ego vehicle. Additionally, the radar recognizes 
the vehicle standing in front of the pedestrian cross-
walk.  
 
Finally, the radar detects other pedestrian and street 
lights around 50 m in front. 
 
In detail, this scenario shows the level of detail, which 
has to be captured by the different sensors. Either in 
reality or in virtual, especially object in far distance are 
difficult to detect and classify. 
 
Conclusion  
 
In summary, the virtual environment as well as the 
virtual vehicle model fulfill the given expectations. The 
interaction of virtual sensors and virtual traffic partici-
pants works reliably and reproducibly. The necessary 
metadata for the computation of the virtual sensor 
models are provided. Hence, it is possible to investi-
gate border line cases of surrounding sensor detections 
within the virtual world. The model will help planning 
and designing street topologies, positions for city furni-
ture and car to pedestrian interactions in future urban 
development projects. The next steps are to increase 
the level of detail of real traffic participants by adding 
motion realistic behavior, as well as extend the sensor 
model portfolio by implementing a camera sensor 
model. 
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