
Virtual urban traffic infrastructure for testing highly auto-
mated mobility systems

Rene Degen,
CAD CAM Center Cologne (4C) at Cologne University of Applied Sciences, Cologne, Germany.
Division of Electricity, Department of Electrical Engineering, Uppsala University, Uppsala, Sweden.

Harry Ott,
CAD CAM Center Cologne (4C) at Cologne University of Applied Sciences, Cologne, Germany.
Division of Electricity, Department of Electrical Engineering, Uppsala University, Uppsala, Sweden.

Fabian Overath,
CAD CAM Center Cologne (4C) at Cologne University of Applied Sciences, Cologne, Germany.

Florian Klein,
Hoersch und Hennrich Architekten GbR, HHVISION, Cologne, Germany.

Martin Hennrich,
Hoersch und Hennrich Architekten GbR, HHVISION, Cologne, Germany.

Dr. –Ing. Christian Schyr
Advanced Solution Lab, AVL Deutschland GmbH, Karlsruhe, Germany.

Prof. Dr. Eng. Mats Leijon,
Division of Electricity, Department of Electrical Engineering, Uppsala University, Uppsala, Sweden.

Prof. Dr. rer. nat. Margot Ruschitzka,
CAD CAM Center Cologne (4C) at Cologne University of Applied Sciences, Cologne, Germany.

Abstract

Recently, virtual realities and simulations play important roles in the development of urban traffic infrastructure. By an
appropriate abstraction, they help to design, investigate and communicate inner-city development processes. Especially,
to investigate interactions between infrastructure and future mobility participants, a valid virtual model is essential for
functionality and reliability.
The aim of this study is the investigation of interactions between a virtual infrastructure model and virtual sensor mod-
els of highly automated mobility systems. The overall system consists of a georeferenced virtual city model and proba-
bilistic sensor models, which are part of an automated vehicle model. The virtual environment comprises a comprehen-
sive, virtual 3D model of a representative German inner-city scene, considering specific height coordinates. The proba-
bilistic sensor models represent real radar and lidar sensors and comprehensively replicate their physical functionality
in a virtual environment. Considering different levels of detail, the realistic representation of physical effects of the
virtual city model on the virtual sensors is investigated. The investigated scenarios are derived from representative
urban traffic situations. The complexity as well as the level of information of the virtual city scenarios is iteratively
increased. Subsequently, the effects on the model validity of the overall system is checked and analysed.
The results show that the developed virtual environment performs well for different levels of detail of representative
virtual traffic scenes. In addition, the selected modelling depth is very suitable for the high-performance investigation
of interaction between virtual urban environment and virtual autonomous vehicle.

1. Introduction

Simulation methodologies play an important role in the
development of modern mobility solutions. Thereby,
mobility is often defined by technical vehicle solutions.
In this paper the interaction of urban traffic infrastruc-
ture and technical mobility solutions is investigated.
The aim is to generate information about how urban
traffic infrastructure has to be designed to enable safe
and future oriented automated mobility. Therefore, a

virtual traffic infrastructure is developed, which in-
cludes mobility solutions as well as urban infrastruc-
ture. The structure of this paper is shown in Figure 1.

Figure 1: Structure of the virtual traffic infrastruc-
ture

2. Virtual (City) Environment

The virtual environment is separated into the geome-
try-based illustration of the city and the functional
based implementation of traffic flows.

Figure 2: Structure of the Virtual Environment

2.1 Virtual City Model
The used virtual city model bases on a detailed laser
scanned model of the city geometries. They include all
kind of georeferenced parameters considering position,
orientation and general dimensions. To decrease the
amount of data und increase the quality of the surfaces,
the laser-scanned data are reduced and retopologized
first. Therefore, especially the level of detail is de-
creased and just the general city structure is captured.
A example is show in Figure 3.

Figure 3: Reworked City Geometry Model

For the further procedure, the buildings, which are
shown in the Figure 3 are separated out of the city
geometry model and reworked individually up to a
minimum detail level of Figure 3.With respect to the
level of detail of the real building, the geometrical
information of the virtual model is added. Especially,
sharp contours of windows and balconies have to be
reworked to approximate the reality. Afterwards the
individual buildings were included separately info the
Virtual Reality (VR) environment. The included model
is schematically shown in Figure 4.

Figure 4: Geometrical building models in VR

In this model, each building is individually rebuild and
textured to look like the real one. Additionally, the
virtual buildings are fitted with meta-data to include
specific information into the model. Afterwards, each
building is positioned individually, whereby the virtual
city model is recreated like the real city. In the same
way, the city furniture is modelled and included into
the city model in VR. Examples for these textured
objects are shown in Figure 5.

Figure 5: Examples for city furniture in VR

Finally, the virtual city model is illuminated by virtual
light effects. Therefore, a virtual light model is devel-
oped. This determines the individual interactions of
lights and shadows depending the direction of the light
sources in the scene. By using the virtual light model,
individual scenarios like the sunset, a foggy day or the
nocturnal darkness can be created.

2.2 Virtual Traffic Model
To supplement the virtual city environment, the geo-
metrical city model is augmented by a virtual traffic
model. Therefore, on the one hand, the georeferenced
model is textured to look like real street illustration and
on the other hand, virtual vehicles, including trajecto-
ry-planning algorithms, are added.
For texturing, especially two main aspects are repre-
sented. First, the traffic lines at the street-surface, sec-
ond, the road composition are rebuild. An exemplary
illustration of a virtual road is shown in Figure 6. It is
important that the road signs and signal lights are cor-
rectly designed and placed in a country-specific man-
ner, so that they can be identified by the sensors of the
vehicles.

Figure 6: Exemplary illustration of a virtual road

To generate target trajectories for the simple virtual
vehicles, the spline-path-follow-methodology is used.
Therefore, the geometrical road is attributed by a
spline. It is formed by connecting points between
which the spline is interpolated. Thereby, each dot has
three coordinates to specify its position. The course of
the spline is generated depending on the previous and
following dot, which smooths the spline course. Addi-
tionally, the spline course can be adjusted manually.
Figure 7 shows a spline development based on dots.

Figure 7: Schematically course of a spline path

By adding the spline-paths as target trajectories for the
automated virtual vehicles, the virtual traffic is initial-
ized. The virtual vehicle dynamic is based on a simpli-
fied vehicle dynamic model by the Nvidia PhysX En-
gine in the Unreal Engine. The trajectory controller is
set up as a look ahead control. The steering angle is
calculated by determining the difference between the
look ahead point in front of the virtual vehicle and the
target trajectory. Additionally, the vehicle velocity can
be specified to complete vehicle trajectory design. The
throttle input is calculated according to this speed limit.
Additional to the speed limit, each spline contains
references to possible succeeding splines. When a
vehicle reaches the end of a spline, a succeeding spline
is randomly chosen and the vehicle will follow a new
spline. Each new spline contains the rules like, speed
limits and possible spline changes.

Furthermore, the spline paths can be adapted by traffic
functionalities like traffic lights. Methodically, bound-
ing boxes around the objects are used for the interac-
tion between the vehicles and the relevant traffic ob-
jects. If a vehicle bounding box crosses a traffic objects
bounding box, for example a traffic light, a reference
of the traffic light controller is passed to the controller
of the vehicle. This reference contains the current state
of the intersection e.g. the state of the traffic light. The
controller of the vehicle then decides, depending on
this state, whether it should continue driving or break
and wait for the traffic light. A schematically illustra-
tion of an intersection traffic light scenario is shown in
Figure 8.

Figure 8: Signal light intersection

In summary, the virtual city environment consists of a
georeferenced inner city model attributed by an automat-
ed traffic model. In connection, a comprehensive urban
traffic simulation is set up, which schematically repre-
sents real inner city traffic situations.

3. Virtual Vehicle

The interaction between automated mobilities and city
infrastructures is an important issue in current automo-
tive research activities. Hence, the following section
will introduce an innovative virtual vehicle model for
the representation of automated vehicle functionalities.
The goal is the simulation of realistic vehicle behaviors
in urban traffic situations. Figure 9 shows the general
structure of the used and implemented model network.

The core of the research environment is a highly au-
thentic, visually realistic, georeferenced virtual reality
city scene. To enable the mentioned interactions, the
model is augmented by two submodels. A dynamic
pedestrian avatar model, steered by a real-time network
motion capturing and a vehicle model, including a
physically correct dynamic model and three sensor
models. The vehicle avatar serves as an interface to
implement real vehicle functions into the scene. Its
implementation is done in a closed loop communica-
tion between MATLAB and the Virtual Reality engine
via network. Finally, three sensor models, implemented
in the virtual city model, aim to simulate the recog-
nized surrounding data by the vehicles sensors.

The visualization and potential further processing of
the Radar and Lidar datasets takes place in MATLAB.
The data transmission is done by network protocol

Figure 9: Model structure of the virtual vehicle

again. The aim is not only to simulate the data in a high
realistic way, but also to create a decentralized struc-
ture that makes it possible to test complex scenarios
independent of the location. The following sections
show the detailed structure and the implementations of
the described models.

3. 1 Vehicle Dynamic Model

To represent the real vehicles behavior of the ego vehi-
cle, it is necessary to simulate the influences of the
vehicle dynamics depending on the scenes environ-
mental influences in a realistic way. Caused of real-
time claims, it is important to find a complexity level
that represents the cars movements in a sufficient accu-
racy, without taking too much computation resources.
Most virtual reality environments, like the used Unreal
Engine, aim not to implement physical simulation
models. Therefore, the determination of the vehicle
dynamics model is built in MATLAB Simulink. It is
composed of different sub models, as shown in Figure
10.

Figure 10 Vehicle dynamics model with sub models
and steering input

By using a five body model, the vehicle vertical dy-
namics are simulated. The body’s represent the vehi-
cles main masses, consisting of the chassis and the four
wheels. The wheels are stimulated by a foot-point
stimulation depending of the surface-condition of the
street. This allows the interaction of the model and the
virtual city environment. A double track model simu-
lates the lateral dynamics of the vehicle. Additional
models also represent the drivetrain and the slip angle
dependency of the tires as well as environmental influ-
ences like rolling, air and gradient resistances.

The steering of the model can either be controlled
manually by a user input or automated by a driver
model. For the manual steering, all common input
devices can be connected to Simulink. This allows the
user to move freely within the virtual scene and test the
model network in various scenarios. For a better repro-
ducibility, an automated driver model is implemented.
It uses pre-defined spline paths, created in the virtual

city environment and exported to MATLAB. The im-
plemented path following algorithm bases on a pure
pursuit controller, like described in (Samuel, 2016). It
controls the vehicles steering input by following look
ahead points in front of the car lying on the defined
spline path. Theoretically, a dynamic path depending
on the current driving state could replace the prede-
fined spline path in MATLAB. Since path-planning
algorithms are not part of the current work, this topic
will not be further discussed. A vehicle avatar in the
Unreal Engien connects the simulation model with
vehicle geometries in the urban city environment. By
connecting these models, a highly efficient Co-
Simulation is realized.

3.3 Lidar Sensor Model

A typical environmental sensor for vehicle auto-
mation is the Lidar sensor. Therefore, in the fol-
lowing chapter, a Lidar sensor model for the ap-
plication in VR is introduced. The technology
uses laser beams to scan the surrounding. Multiple
beams are sent either one after the other or at the
same time. Depending on the transmission charac-
teristics, the systems can be divided into single
beam and multi beam scanning Lidars. Since the
following model aims to simulate the physical
properties of a Lidar, the scanning principle is not
relevant for further considerations. It is only im-
portant that a possibility is provided, to control the
shape and resolution of the Lidar field. For each
sent Laser beam, time the light takes to travel to
the target object and back to the sensor is deter-
mined. According to (Winner et al, 2016) this can
be used to compute the distance as described in
Equation 1.

0

2
⋅

= ofc t
d (1)

In this equation, c0 represents the speed of light, tof is
the duration the light travels and d is the distance to the
target object. Since it is not possible to simulate the
speed of light in a virtual environment, a substitution
model is needed. Therefore, the so called linetracing or
raytracing methodology is used. These virtual rays are
defined by a starting point and an endpoint. If a ray hits
an object within the scene, predefined information like
the impact location were returned. To enable the cov-
erage corresponding to a real sensor, the field in front
of the virtual car is scanned at frequently. The azimuth
and the elevation angle define the area of interest. For
the discretization of the field, the angular resolution of
the sensor in the respective direction is used. With that,
the complete azimuth range is scanned, as shown in
Figure 11. Then the elevation angle is incremented and

the azimuth angle get scanned again, until the whole
field is covered.

Figure 11 Discrete scanning of the Lidar field

If a ray hits an object, an algorithm is executed, com-
puting the relevant data of the Lidar recognition. The
aim is to determine whether a point is detected by the
Lidar. An important value for this decision is the signal
to noise ratio (SNR), as defined in Equation 2.

= r

n

PSNR
P

 (2)

Here Pr represents the power received from the Lidar
and Pn is the sum of the induced noise powers. The
higher the SNR value, the greater the probability of
detection. Corresponding to (Winner et al., 2016),
(Kim et al., 2013) and (Kernhof et al., 2018) and
through additional adaptations and assumptions the
fraction of the received power can be expressed by
Equation 3.

2

3

cos()t r t sys i
r

V

A P
P

Q d
ρ τ η θ

π
⋅ ⋅ ⋅ ⋅ ⋅

=
⋅ ⋅

 (3)

In this equation, ρt is the reflectance coefficient of the
target object; Ar represents the receiving lens area; τ
stands for the atmospheric transmission coefficient; ηsys
are the summarized system losses; θi is the incidence
angle of the light beam on the objects surface and QV
stands for the divergence of the shot beam. For the
implementation of this equation into the virtual reality,
most of the parameters can be passed as variables.
Only the incidence angle and the targets distance de-
pends of the linetraces. The distance can directly be
read out of the linetrace results, the incidence angle can
be computed by equation 4 using the incidence vector i
and the surface normal n at the impact point.

1cosi
i n
i n

θ −
= ⋅

 (4)

Besides the received power, the noise powers acting on
the Lidars receiving systems need to be determined.
They are mainly composed of the sun induced noise
and the dark current noise. The sun induced noise is
generated by sunlight illuminating the targets surface
and impinging the sensor. Equation 5, according to

(Kim et al., 2013), can compute the power of this noise
source.

2
sun Si t r sysP E B A IFOVλ ρ τ η= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (5)

ESi represents the illumination intensity of the sunlight,
Bλ is the electromagnetic bandwidth of the receiving
unit and IFOV is the instantaneous field of view. In
case the same optics for receiving and transmitting the
signals is used, the IFOV corresponds to the beam
divergence. Thermal effects of the photo element gen-
erate the dark current noise. For the computations of
this noise, Equation 6 is used.

max

D
DK

IP =
ℜ

 (6)

Here, ID stands for the dark current and ℜmax represents
the maximum sensitivity of the photo element. Both
parameters can usually be found in the datasheets of
photo elements. By this, it is now possible to compute
the signal to noise ratio and make a decision whether a
point gets recognized or not. The computation is com-
puted for every ray hitting an object within the scene.

At every simulations step different metadata like the
SNR-value and the determined powers are generated.
However, it is problematic, that the coordinates of
captured points are shown as perfectly accurate values.
Real Lidar sensors have a limited resolution due to the
time capturing system, amplifications and analog to
digital conversions (Kernhof et al., 2018). Since com-
mercial sensors differ in capturing technologies and
used hardware, it is not feasible to model these inade-
quacies accurately. Instead, the influence of the acting
inadequacies are displayed. In the given case, this is
done by multiplying the resolution, provided by most
sensor manufacturer, with a white Gaussian noise and
adding the result to the distance value.

Therefore, all relevant data are known and ready for
further processing. To enable this, the values are stored
in arrays and sent to MATLAB by an UDP communi-
cation. To generate a practical reference, the sensor is
parametrized according to the Valeo SCALA 3D Laser
Scanner, a commercial serial product for ADAS appli-
cations. The determined values shown in Table 1 are
mainly taken from the sensors datasheet (Hexagon,
2021). All missing values are adopted from the
datasheet of a typical photodiode (Hamamatsu, 2018)
and the literatures (Weber, 2018) and (Kim, et al.,
2013). The environmental parameters like the atmos-
pheric transmission coefficient or the irradiance of the
sun are set dynamically within the virtual scene, de-
pending on the particular study.

Table 1 Parametrization of the virtual Lidar ac-
cording to the Valeo Scala sensor

3.2 Radar Sensor Model

A further typical environmental sensor for ADAS
application is the radar Sensor. It is commonly used for
automotive since it is comparatively cheap, provides a
large detection distance and is resistant against envi-
ronmental influences. The virtual environment of this
paper aims to simulate all necessary environmental
data for the interaction of autonomous vehicles and
driving functions with pedestrians in real time. Hence,
a probabilistic radar model is used. It provides all rele-
vant data in an object list and simulates the phenomena
of the radar technology, without performing a full
physical simulation.

The implemented model is largely based on the proba-
bilistic radar model presented by (Muckenhuber, et al.,
2013) and is extended by several assumptions. To
represent the model as realistic as possible, the real
commercially used radar sensor Continental ARS 408
serves as a reference. (Liebske, 2015) provides the
Datasheet. The execution of the model takes place in
two steps, as shown in Figure 12.

Figure 12 Overview of the probabilistic radar mod-
el execution

In a first step, the so-called Ground Truth Data need to
be generated. It is a dataset, containing all possibly
detectable objects in the sensors field of view and the
corresponding metadata. After the perfect data are
generated, the second execution step manipulates the
dataset with respect to measurement errors, resolutions
and inaccuracies. Hence, the phenomena of the sensor
are mapped.

For the generation of the Ground Truth all relevant
objects lying in the detection area of the sensor within
the scenery need to be captured. The datasheet of the
sensor provides the sensing areas displayed in Figure
13.

Figure 13 Sensing areas of the Continental ARS 408
(Liebske, 2015)

Caused of inner-city applications, only the near sensing
area needs to be modeled. As with the previous de-
scribed Lidar model, a linetracing method is used to get
the relevant objects, similar to Figure 11. However, for
this probabilistic model it is not necessary to get the
data of the trace itself. Instead, the objects are passed

 Symbol Value Unit

Azimuth Angle ϕtot 145 deg

Elevation Angle ϑtot 3.2 deg

Azimuth Resolution Δϕ 0.25 deg

Elevation Resolution Δϑ 0.8 deg

Distance Resolution ΔR 0.1 m

Radiated Power Pt 80 W

Lens Area Ar 0.0007 m²

Beam Divergence /
Instantaneous Field of View Qv / IFOV 0.003 rad

Electromagnetical Receiver
Bandwidth Bλ 2 nm

Dark Current ID 10 nA

Sensitivity Photo Diode ℜmax 0.5 A/W

System Efficiency η 0.9 -

to an array, if they are hit the first time. The angular
resolution of the linetracing needs to be much higher
than at the Lidar model, not to omit any object. More-
over, the detection range of the sensor is not constant
over the azimuth angle. Hence, the detection field is
adapted to the near sensing area as shown in Figure 13.

As already mentioned, the result of the linetraces is an
array containing all actors within the field of view of
the virtual sensor. Since not all objects are relevant for
the virtual sensor, the next step is the classification and
sorting of the objects. Table 2 provides the types of the
objects for the classification.

Table 2 Object classifications for the probabilistic
radar model

Typ Index Color

Car 1 Cyan

Truck 2 Blue

Pedestrian 3 Red

Motorcycle 4 Yellow

Bicycle 5 Green

Unknown 6 Magenta

Based on that, all relevant actors within the virtual
scene are augmented by a so called tags. These tags are
detected, if the actor is hit by a linetrace. A color is
assigned to each class for visualization purposes. The
object designations are predominantly self-explanatory.
The “Unknown” class contains all geometries, that are
generally received by the radar sensor, but without
classification, like postboxes, street signs, advertising
pillars and other street furniture. Objects that have no
predefined class are omitted. In a next step, the missing
metadata of the relevant actors are determined. The hit
objects directly return information according to posi-
tions and orientations of the object. To become local
coordinates in the system of the sensor, a coordinate
transformation from the global system has to be per-
formed. Additionally, the size of the minimum sur-
rounding box, the so called bounding box, is generated
for every found object.

Finally, the ideal maximum radar cross sections (RCS)
is missing for the recognized objects. This value gives
an indication of how large the proportion of the re-
flected radiation energy is, that impinges on an object.
In further processing steps the RCS value can be used
to make a decision, if an object is recognized. As the
objects index, the value is predefined in tags for each
relevant actor within the scene. Since the value fluctu-
ates depending on the aspect angle, the pre-defined
value provides the maximum possible radar cross sec-
tion. Previous works like (Degen, et al., 2021) show
the general possibility to simulate radar cross section
within a virtual reality engine. However, the paper also

offers issues in real-time performance. Due to that, the
current probabilistic model uses a pre-defined RCS for
every object and manipulates it to get a realistic value.
The method will be described in the further progress of
this paper.

The physical phenomena of the sensor are replicated,
without simulating its full physics. At first, the influ-
ences of the sensors resolution and accuracy are ap-
plied to the ground truth signal as displayed in Figure
14.

Figure 14 Visualization of the data manipulation to
simulate the sensors resolution and accuracy.

The vehicle coordinate system and a theoretical target
object are shown. The green vector represents the ideal
and error-free position of the target, taken from the
ground truth. To implement the resolution influences
so called range gates are formed. The size of the range
gates corresponds to the resolution. To sort the dis-
tance into the range gates, the length of the vector is
divided by the resolution and rounded to an integer
value. This results in the number of range gates. Sub-
sequently the resulting integer value is multiplied with
the resolution again. This leads to the yellow vector.
The effect of the measurement accuracy is implement-
ed next. This value fluctuates randomly in positive and
negative direction. Thus, a static implementation is not
possible. Instead the value of the measurement accura-
cy, taken from the datasheet (Liebske, 2015), is multi-
plied with a white Gaussian noise with a standard devi-
ation of one. The resulting vector, visualized in blue, is
added to the yellow in range gates sorted vector.

After the range manipulation, the next step is the im-
plementation of aspect angle and coverage effects to
the RCS value. The principal methodology is shown in
Figure 15.

Figure 15 Method for the manipulation of the RCS
value

The manipulation is based on the assumption, that the
maximum RCS of an object is given at its longest side.
In Figure 15 this is represented by the yellow line. To
simulate coverage and aspect angle influences, the
already carried out ray traces are used. First, the first
and the last ray trace that hit the geometry are deter-
mined for each object recognized. It is obvious that
covered parts of the targets objects are not noticed with
this method. The result is shown as a red line. In a next
step, this red line is projected onto the Y-axis of the
local sensor coordinate system. To artificially reduce
the ground truth RCS, it is multiplied with the quotient
of the length of the yellow line, representing the ob-
jects longest side and the length of the purple line,
representing the visible fraction of the object. This
completes the reduction of the RCS.

According to Figure 12 the next step of the probabilis-
tic model is the object reclassification. Real radar sen-
sors classify objects on their radar signature. This is
only possible in certain distances, depending on the
objects type. So far, all objects get recognized and
classified correctly. To simulate the real radars detec-
tion behavior, two thresholds are implemented. It is
assumed, that cars, trucks and motorcycles are correct-
ly classified up to a distance of 50 m. For Pedestrians
and bicycles, the assumed threshold is 30 m. If the
distance of any object exceeds the threshold defined
for its class, it gets reclassified to the “unknown” class.

The last manipulation step visualized in Figure 12 is
the implementation of false positive and false negative
objects. With real radar sensors two phenomena can
occur. On the one hand, objects can appear that are not
physically part of the real surrounding. These are
called false positive (FP) objects. On the other hand,
objects that are physically part of the sensing area can

stay undetected for a certain time. These are named as
false negative (FN) objects. Both phenomena are im-
plemented in the following, starting with the FN ob-
jects. A detection probability with a value between
zero and one is pre-defined for every object class. On
every execution step and for every actor a pseudo ran-
dom value, also between zero and one, is generated. If
the generated value is smaller than the detection prob-
ability, the object is added to the object list. If it is
larger, the object gets neglected. With this, it is possi-
ble to adjust the average false negative rate for every
object class. The implementation of false positive ob-
jects is more complex, as the objects are not only to be
implemented, but also random positions have to be
found for them. At a first step a value for the average
number of recognized FP objects at every frame is
defined depending on the object classes. Additionally,
typically bounding box sizes are defined for every
object class. The FP objects are added after the execu-
tion of the complete probabilistic radar model, when all
objects with metadata reduced by the FN objects are
known. The generation of the FP objects is done for
every object class separately, through a loop that iter-
ates the object types. In that loop the class individual
average number of FP objects is used to compute the
actual number of FP objects for the respective simula-
tion step. This is done by applying a white Gaussian
noise to the value and converting it to an integer. After
that, a second loop is initiated for the generated integer
value. Within that loop, the respective FP object is
generated. The first value, that is generated for each
false FP object is the extend. For that, the pre-defined
average size of the class dependent bounding box is
manipulated by a Gaussian noise. Thus, the average
size of the bounding box corresponds to the pre-
defined value, but the individual sizes vary within a
certain range. The same procedure is also used to gen-
erate an artificial RCS value for the respective object.
After all metadata are created, the respective object
gets positioned at a random position with a random
orientation within the sensors field of view. This is
repeated until the computed number of false positive
objects for the object class is reached. After that, the
Object class is incremented and the algorithm is exe-
cuted again.

4. Investigation of the Virtual Traffic Infrastructure

For the interdisciplinary city infrastructure planning,
the impact of infrastructure and automated mobility is
crucial. Therefore, a valid virtual environment, which
enables investigation of interaction between mobility
sensors and the traffic infrastructure is essential. In this
chapter, the developed virtual city infrastructure is
investigated to evaluate its quality for further applica-
tions. The base for the investigation are representative
urban traffic scenarios, which illustrates typical chal-
lenges for ADAS sensors in inner-city environments.

4.1 Crossing with urban structure

Especially at urban environments, buildings and city
infrastructure cause shadings. A typical scenario is the
crossing, whereby urban development restricts the
driver’s field of view. Figure 16 shows the scenario
from different perspectives.

The bird´s-eve view illustrates the general scene. Espe-
cially the building on the right-hand side of the ego-
vehicle restricts the field of view. The view into the
crossing street depends straight of the distance to the
crossing. A holistic view is only possible just before
entering the crossing.
Additionally, the Lidar-beam course is visualized in
Figure 16 bottom. Next to the distance, which is shown
by the color of the Lidar-dots, the georeferenced
course of the virtual environment gets clear. The dots
hit the street at a far distance in front of the ego-
vehicle.

4.2 Street line with street furniture

Another interesting city application for the mentioned
investigation is the effect of street furniture to the
ADAS sensors. The general properties of a bin or an
advertising pillar for example are quiet related to hu-
man properties. Figure 17 visualizes a street line with
street furniture scene.

Besides to the urban structures, typical street furniture
like bins, advertising pillars and traffic signs are in-
cluded. Additionally, the course specific of the Lidar-
sensor is shown. Thereby especially the falling course
of the street is becomes clear.

4.3 Pedestrian crossover

Crossovers are the typical urban interfaces between
pedestrians and vehicles. Here, traffic signs, other
vehicles or buildings restrict the field of view often.
The implementation in the virtual environment of this
scenario is shown in Figure 18.

Figure 16:
Top: Bird´s-eye view of the scene Crossing with
urban development,
Bottom: Vehicle-top view of the scene Crossing with
urban development.

Figure 17:
Top: Bird´s-eye view of the scene Street line with
street furniture,
Bottom: Vehicle-top view of the scene Street line
with street furniture.

Next to the roundabout, which is not focused in this
investigation, the pedestrian crosswalk with the ap-
proaching ego-vehicle is illustrated. Additionally, pe-
destrians on and at the beginning of the crossover are
implemented. Finally, the scenario is filled with street
and traffic furniture.

4.4 Street with structural separation

The final investigation-scene is the multi-lane street
with a structural separation of the driving directions. In
this implementation street greenings like bushes and
trees provide the separation (shown in Figure 19).

In Figure 19 bottom, the vehicle-top view of the scene
is illustrated. It shows the diversity of a typical inner-
city scene with a river and a bicycle and pedestrian

sidewalk at the right-hand side and urban structures at
the left-hand side. All lanes are divided by boundaries
like greenings and walls.

5. Analysis and Results

To evaluate the suitability of the virtual city environ-
ment for the investigation of interactions between traf-
fic infrastructure and ADAS developments, the data of
the virtual sensors are analyzed. For this reason, the
previous investigation study is evaluated.

5.1 Crossing with urban structures

First, the crossing scenario is analyzed by reviewing
the radar-sensor model data and the lidar-sensor model
data.
The measured data of the lidar-sensor model are shown
in Figure 20.

The plot of the lidar-sensor model shows quiet good
results. First, the general edges of the urban structures
are detected. Additionally, the vehicle standing on the
left-hand side of the ego-vehicle is captured by the
lidar. Further, the street-surface including the side-
walk-edge far in front of the ego-vehicle is perceived.
Also, the street furniture like street lights and traffic
signs are detected well. This is shown in the Lidar-plot
at 20 m lateral distance and 6 m longitudinal distance.
Additionally, the lidar detcts a short surface of the
vehicle standing in the crossing street right-hand side
to the ego vehicle. This can be seen at 18m longitudi-
nal axis and 11m lateral axis. Finally, the two pillars of
the building right-hand side of the ego vehicle are
recognized, which correlates with the illustration at
Figure 16 bottom. The course of the lidar dots, which
represents the field of view, includes two pillars; the
first one is out of the detection area.

Caused by the model setup, the radar sensor only de-
tects classified objects. The plot of the sensor at the
crossing with urban development scene is illustrated in
Figure 21.

Figure 20: Lidar-Plot of the scenario Crossing with
urban development

Figure 19:
Top: Bird´s-eye view of the scene Street with struc-
tural separation,
Bottom: Vehicle-top view of the scene Street with
structural separation.

Figure 18:
Top: Bird´s-eye view of the scene Pedestrian crosso-
ver,
Bottom: Vehicle-top view of the scene Pedestrian
crossover.

A direct comparison with Figure 16 makes clear, that
the consideration of the shadings due to the urban
building is given. The vehicle standing at the begin-
ning of the crossing road is recognized with reduced
RCS. This could be seen by the minimized classifica-
tion box around the detected object in the radar plot.
Further, the vehicle at the sidewalk left-hand side to
the ego vehicle is detected and classified. Additionally,
one object in front of the ego-vehicle is received and
not classified. The comparison with the lidar plot
shows clearly, that this object has to be a traffic sign.

5.2 Street line with street furniture

To investigate the uniqueness of the street furniture
detection, the sensor data of the Street line with street
furniture scenario are analyzed.
The sensor data plots are shown in Figure 22 and Fig-
ure 23.

By comparing the results with Figure 17 especially the
contours of the passing street becomes clear. The lidar

plot shows the course of the street lane between 40 m
and 50 m. A little wall and street greening border this
part of the road. Additionally, the buildings directly
next to the ego vehicle are detected, which is repre-
sented by straights in the plot. Furthermore, the lidar
recognizes the diversity of street furniture in the longi-
tudinal distance between 15 m and 40 m. Despite of the
little dimensions of for example street lights and the
big distance to the ego vehicle, the lidar-sensor model
receives it quite well.

The radar sensor detects less objects. Just one vehicle
is detected and classified. However, the functionality is
very well. As shown in Figure 17 top, the crossing
vehicle is just hit at a little spot of the front (see the red
dot). The radar sensor detects it, classifies it correct
and reduces the RCS in dependency of the received
area. The reduction of the RCS could be seen at the
little dimensions of the object box in Figure 23 at 40 m
longitudinal distance to the ego-vehicle. In addition,
street furniture is also recognized. At the right-hand
side in front of the ego-vehicle a bin and a traffic sign
are detected. At the left-hand side an advertisement
pillar and a traffic sign are recognized.

This examined scene shows well the individual fields
of application of the implemented sensor models.
While the radar sensor model returns a classified ob-
ject, the lidar only shows the object contours. The
classification has to be done by an external algorithm.

5.3 Pedestrian crossover

The crossover scene is one of the most complex sce-
narios investigated. Next to the diversity of partici-
pants, the road course is falling and behind the crosso-
ver is a roundabout. The complexity becomes clear by
consideration of Figure 24. The lidar-plot shows the
variety of contours an individual dots, which has to be
assigned.

Figure 23: Radar-Plot of the scenario Street line
with street furniture

Figure 21: Radar-Plot of the scenario Crossing with
urban development

Figure 22: Lidar-Plot of the scenario Street line with
street furniture

First, the complex architecture of the building at the
left-hand side of the pedestrian crossover stands out.
The pillars and edges of the building are recognized
well. Furthermore, one pedestrian at the crossover as
well as the traffic sign in the middle of the crossover
and the street light are detected, which could be seen in
the lidar plot between 15m and -5m longitudinal dis-
tance and 5m and 20m longitudinal distance. Interest-
ing is the effect, that the second person at the crossover
is shaded by the traffic sign. The sensor does not re-
ceive the person. Additionally, around 40m in front of
the ego vehicle, the edges of a vehicle as well as the
statue in the middle of the traffic circle are detected.
Next, the contours of two buildings at the right-hand
side and quite in front of the ego-vehicle are detected,
which gets obvious by comparison with Figure 18
bottom. Finally, street furniture like traffic signs and
street lights as well as restaurant furniture is captured,
which could be seen especially at the left-hand side in
the height of the traffic circle.

In detail, both the complexity and diversity of the lidar
sensor results are confirmed by the radar plot data
(Figure 25). One vehicle in the traffic circle is captured

and classified. Additionally, one person at the pedestri-
an crossover as well as the street light are detected.
Furthermore, the sensor captures the constellation of
the street furniture and traffic signs at the left-hand side
part of the traffic circle.

5.4 Street with structural separation

At least the sensor data of the street with structural
separation scenario are analyzed. Like bevor, radar
and lidar sensor data are used for the analysis.
The lidar-plot is shown in Figure 26 and the radar plot
is shown in Figure 27.

In general, the lidar plot shows the course of the street
quite well. The boundaries like the wall at the right-
hand side of the vehicle as well as the building at the
left-hand side further back are captured well. Further-
more, the diversity of bushes and trees as well as traffic
signs at the greening around the road are detected cor-
rectly. Conspicuous is the red line in Figure 19 bottom.
This line, which represents the lidar beams, is illustrat-
ed in the lidar plot between 40m and 50 m longitudinal
distance, too. It is caused by the geo-individual course
of the road. The course of the road increases in height.
Finally, different pedestrian contours are captured at
the pedestrian crossover at the left-hand side in front of
the ego vehicle (see Figure 19 top).

In sum, the interpretation of the lidar plot is very com-
plex. Without the direct comparison of the scene pic-
ture, especially the assignment of little contours is
difficult. This shows quite well, how essential the con-
nection of the different sensor information is for highly
automated vehicle systems.

Figure 24: Lidar-Plot of the scenario Pedestrian
crossover

Figure 26: Lidar-Plot of the scenario Street with
structural separation

Figure 25: Radar-Plot of the scenario Pedestrian
crossover

In this case, the radar plot shows a significantly re-
duced complexity. Mainly, the radar captures the pe-
destrians walking through the crosswalk between 25 m
and 40 m longitudinal and around -25 m lateral in front
of the ego vehicle. Additionally, the radar recognizes
the vehicle standing in front of the pedestrian cross-
walk.

Finally, the radar detects other pedestrian and street
lights around 50 m in front.

In detail, this scenario shows the level of detail, which
has to be captured by the different sensors. Either in
reality or in virtual, especially object in far distance are
difficult to detect and classify.

Conclusion

In summary, the virtual environment as well as the
virtual vehicle model fulfill the given expectations. The
interaction of virtual sensors and virtual traffic partici-
pants works reliably and reproducibly. The necessary
metadata for the computation of the virtual sensor
models are provided. Hence, it is possible to investi-
gate border line cases of surrounding sensor detections
within the virtual world. The model will help planning
and designing street topologies, positions for city furni-
ture and car to pedestrian interactions in future urban
development projects. The next steps are to increase
the level of detail of real traffic participants by adding
motion realistic behavior, as well as extend the sensor
model portfolio by implementing a camera sensor
model.

Acknowledgements

The Project is funded by the Ministry of Economic
Affairs, Innovation, Digitization and Energy of North
Rhine-Westphalia. Additionally, the project is support-

ed by HH Vision, Hoersch und Hennrich Achitekten
GbR and AVL Germany GmbH.

References

Degen, R., Ott, H., Overath, F., Schyr, Ch., Leijon, M.,

Ruschitzka, M. (2021) Methodical approach to the
development of a Radar Sensor model for the Detec-
tion of Urban Traffic Participants Using a Virtual
Reality Engine. Journal of Transportation Technol-
ogies. 11, 02, 179-195.

Hamamatsu Photonics K.K. (2018).

https://www.hamamatsu.com/resources/pdf/ssd/s120
23-02_etc_kapd1007e.pdf

Hexagon Autonomy and Positioning (2021).

https://autonomoustuff.com/products/valeo-scala

Kernhof, J., Leuckfeld,J. and Tavano, G. (2018). Li-

DAR-Sensorsystem für automatisiertes und autono-
mes Fahren, in: Thille, T. Automobil-Sensorik 2.
Springer Vieweg. Berlin, Heidelberg.

Kim, S., Lee, I.and Kwon, Y. J.(2013). Simulation of a

Geiger-Mode Imaging LADAR System for Perfor-
mance Assessment. Sensors 13 ,7, 8460-8489

Liebske, R. (2015), Contionental Automotive. ARS

408-21 Premium Long Range Radar Sensor 77 GHz.

Muckenhuber, S., Holzer, H., Rübsam, J., Stettinger,

G. Object-based sensor model for virtual testing of
ADAS/AD functions. 2019 IEEE International Con-
ference on Connected Vehicles and Expo (ICCVE)

Samuel, M., Hussein, M. and Mohamad, M. B. (2016).

A Review of some Pure-Pursuit based Path Tracking
Techniques for Control of Autonomous Vehicle. In-
ternational Journal of Computer Applications 135,
1, 35-38

Weber, H., (2018). Funktionsweise und Varianten von

Lidar-Sensoren. Sick AG.

Winner, H., Hakuli, S., Lotz, F. and Singer, C. (2016).

Handbook of Driver Assistance Systems. 1st edn.
Springer International Publishing. Cham.

Figure 27: Radar-Plot of the scenario Street with
structural separation

	Abstract
	1. Introduction
	2. Virtual (City) Environment
	2.1 Virtual City Model
	2.2 Virtual Traffic Model

	In summary, the virtual city environment consists of a georeferenced inner city model attributed by an automated traffic model. In connection, a comprehensive urban traffic simulation is set up, which schematically represents real inner city traffic s...
	3. Virtual Vehicle
	3. 1 Vehicle Dynamic Model

	3.3 Lidar Sensor Model
	3.2 Radar Sensor Model

	4. Investigation of the Virtual Traffic Infrastructure
	4.1 Crossing with urban structure
	4.2 Street line with street furniture
	4.3 Pedestrian crossover
	4.4 Street with structural separation

	5. Analysis and Results
	5.1 Crossing with urban structures
	5.2 Street line with street furniture
	5.3 Pedestrian crossover
	In detail, both the complexity and diversity of the lidar sensor results are confirmed by the radar plot data (Figure 25). One vehicle in the traffic circle is captured and classified. Additionally, one person at the pedestrian crossover as well as th...
	5.4 Street with structural separation

	Conclusion
	Acknowledgements
	References

