
Integration of driving physical properties into the
development of a virtual test field for highly automated
vehicle systems

René Degen, M.Sc.

(Cologne University of Applied Sciences, Germany
Uppsala University, Sweden);

Harry Ott, M.Sc.

(Cologne University of Applied Sciences, Germany
Uppsala University, Sweden);

Fabian Overath, M.Sc.

(Cologne University of Applied Sciences, Germany);

Florian Klein.

(Hoersch und Hennrich Architekten GbR, Germany);

Dr. -Ing. Christian Schyr.

(AVL Deutschland GmbH, Germany);

Prof. Dr. Eng. Mats Leijon

(Uppsala University, Sweden);

Prof. Dr. rer. nat. Margot Ruschitzka

(Cologne University of Applied Sciences, Germany);

Abstract

For many years now, models for representing reality have played a decisive
role in the development of control systems. By appropriate abstraction they
help to design an efficient development process. Especially in the development
of Advanced Driver Assistance Systems (ADAS) a valid virtual development
environment is crucial for functionality and reliability.

This study aims the representation of driving physics in a virtual test
environment for the development of robust ADAS systems. The overall system
consists of a georeferenced virtual traffic environment, a multibody vehicle
model and a driver model. The virtual environment includes a detailed 3D

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 1 25th-29th October 2021

model of an urban city in consideration of specific height coordinates of the
environment. The vehicle model is implemented by a simplified two-lane
model based on geometric steering correlations. Alternatively, the vehicle
kinematics are considered by a five-body dynamic model. This model is
combined by a semi-empirical tyre model for realistic modelling of the contact
forces and torques between the tyre patch and the road. Finally, sensor models
for radar, lidar and camera are added to the vehicle model.

To investigate real urban traffic scenarios an advanced driver model is
included, which uses a pure pursuit path tracking algorithm to follow a given
target trajectory. To investigate real pedestrian interaction, a real persons
behavior is included by motion capturing technologies. Those heterogeneous
environments are combined by Co-Simulation to get a real-time connection and
finally the entire testbed.

By applying the Co-simulation environment to a typical inner city traffic
scenario, the verification of the system functionality is done. The outcome is a
safe and efficient virtual city environment, which enables interaction
investigations between typical traffic participants and highly automated
vehicles. In summary, the paper shows the high potential of virtual Co-
simulation environments for progressing automated vehicle functionalities.

1. Introduction

Advanced Driver Assistance Systems/Autonomous Driving (ADAS/AD) are
becoming more and more important in the automotive industry. It is expected,
that automated vehicles will provide promising advantages in transportation
and mobility (BMVI, 2015). In 2019 48 % of all new cars sold in Germany
were equipped with a lane keeping assistant, 39 % have an autonomous
emergency brake and 38 % were delivered with an adaptive cruise control.
(Statista, 2020) In 2020 90% of the German car driver were of the opinion that
ADAS increase the vehicle safety. 89% thought assistance systems make
driving more pleasant. (Statista, 2020) Although the data refer to the German
market, a similar result can be expected internationally. This leads to the
expectation that the market for ADAS will continue to grow in the future.
Besides the opportunities ADAS offer to the vehicle safety, they also increase
the vehicles complexity and the testing effort.

According to (BMVI, 2021) Germany creates the legal framework for
automated driving functionalities at public German roads. On 28 July a new
law was published, which legalizes level 4 functionalities at defined public
roads in regular traffic. (BMVI, 2021)

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 2 25th-29th October 2021

This publication presents a novel approach to combine a highly realistic virtual
urban environment by real traffic participants including motion realistic
persons and physical correct models for the vehicle and it´s sensors.

In the following Figure the model-structure is shown.

Figure 1: Schematically illustration of the overall model structure

2. Virtual Testbed

The accurate simulation of complex innercity scenarios is an important issue in
current automotive research activities. Hence, the following section will
introduce an innovative virtual urban traffic environment. The goal is the
realistic simulation of complex urban traffic scenarios, considering the
interactions of automated vehicles, pedestrians and other road participants.
Figure 2 shows the general structure of the used and implemented model
network. The core of the research environment is a highly authentic and
visually realistic, georeferenced virtual reality city scene. To enable the
mentioned interactions, the model is augmented by two sub models. A dynamic
pedestrian avatar model, steered by a real-time network motion capturing and a
vehicle model, including a physically correct dynamic model and three sensor
models. The vehicle avatar serves as an interface to implement real vehicle
functions into the scene. Its implementation is done in a closed loop
communication between MATLAB and the Virtual Reality engine via network
communication. Finally, three sensor models, implemented in the virtual City
Model, aim to simulate the recognized surrounding data by the vehicles
sensors.

The visualization and potential further processing of the Radar and Lidar
datasets takes place in MATLAB. The camera data are evaluated by an
Artificial-Intelligent based object detection algorithm. The data transmission is
done by network protocol again. The aim is not only to simulate the data in a
high realistic way, but also to create a decentralized structure that makes it
possible to test complex scenarios independent of the location.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 3 25th-29th October 2021

Figure 2: Scheme of the urban traffic model network

a. Virtual City Environment

The first segment of the virtual testbed is the virtual city environment. The
environment is not only characterized as the geometric representation of the
virtual innercity scene, it also serves as an interface for the model network to
be implemented, as shown in Figure 2. Due to that, there are some important
requirements for the implementation of the city environment. On the one hand,
it needs to be optically as realistic as possible, to enable an authentic simulation
on vision based sensors. On the other hand, it needs to be augmented by further
metadata for other environmental sensors like radar and lidar. Furthermore, it
needs to enable the implementation of avatars for the test vehicle and the real
pedestrian subject, including the necessary network interfaces. Since the
implementation of the city model is relatively complex, the development
environment must be versatile and universally linkable.

Figure 3: Structure of the virtual city environment

According to Figure 3 the virtual city model can be divided into three sub
categories. The geometries provide all necessary physical structures of the
buildings, streets and street furniture. Since these models are colourless, the

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 4 25th-29th October 2021

textures and materials enable a realistic optical representation by applying
colours, textures and further surface data to the objects shells. Finally,
additional optical effects provide an accurate overall impression for the virtual
interurban scene. The geometric virtual city model is based on so-called GIS
Data. These are data used by geo information systems, containing rasterized
information like infrastructures, land usages, administrative areas, terrain
topography, building data or imagery. It is obvious, that not all information
provided by GIS datasets are needs. Due to that, the first processing step is the
analysis and filtering of these datasets. The result of this first step is a geo
referred geometric representation of the city environment. In a next step, these
results are reconditioned to be usable within the gaming engine, using third
party tools. An example for a processed building with simplified geometries is
provided in Figure 4.

Figure 4: Reconditioned building within 3DSMax

Besides the city itself, the street furniture are an important part in the urban
appearance. Objects like postboxes, bins, newspaper vending machines and
advertising columns shape the image of the cities. The creation of these objects
is done by hand, according to the original objects. Within the Unreal Engine,
all street furniture and additional objects are multiplied as often as necessary
and placed to fit the appearance of the real environment. The result is an
accurate but still uncolored representation of the real environment, as
visualized in Figure 5.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 5 25th-29th October 2021

Figure 5: Uncoloured city scene

To enable the optically realistic representation of the scenario, the next step is
the texturing of the imported geometries. Depending on the respective objects
appearance, two general texturing methods are distinguished. For surfaces with
simple repeating textures, materials are applied to the whole surface. These are
either taken from pre-defined material libraries, or created by hand. For objects
with more complex appearances, pictures of the real role model serve as a
reference. These images are edited, rectified and then applied to the virtual
surfaces.

Figure 6: Comparison of textured objects, real and virtual

An example for that is provided in Figure 6. The left hand side provides a
picture of the real object that serves as a reference; the right hand side shows
the virtual object for this reference. Hence, it is now possible to visualize the
virtual city scene corresponding to the real environment. However, the
implementation of the static pedestrian dummies that are used within the scene
is different. These dummies are created using a 3D scanning process. This

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 6 25th-29th October 2021

process directly creates the textures, so that the objects can be imported
including the associated appearance.

Finally, optical effects are used to illuminate the virtual environment in a
realistic way. Different light sources are used, depending on the lighting
situation. For example, at a bright day the sun and the sky light serves as the
main light source, at night, the vehicles headlights, the street lights and even
illuminated billboards serve as light sources. Additionally, influences like dust,
fog or rain can be simulated. This makes it possible to recreate critical lighting
situations for the detection of objects with camera based sensors. An example
for that is provided in Figure 7. The example represents a situation with low
sun and dusty air.

Figure 7: Critical lighting situation with low sun and dust

b. Dynamic Pedestrian Model

As shown in Figure 2, the real human vehicle participant is integrated
bidirectional into the virtual testing environment. Its biomechanical behaviour
is detected by motion capturing hardware and integrated into the scene in real-
time. Additionally, the participant is able to interact with the virtual scene by
using a head mounted display. This way a bidirectional interaction is possible.

For the first methodical approach, the Microsoft Kinect for Windows is used. It
uses an optical tracking system with an infrared laser emitting a pattern of dots,
a monochrome CMOS infrared sensor to capture the dot pattern and an RGB
camera to capture the environment. Based on the deformation of the infrared
dots in the environment a depth image is created from the environment 30
times per second by the sensor. Next the Kinect focusses on moving objects
and evaluates these pixel-by-pixel to identify parts of the human body. (Zhang,
2020) Finally, a skeleton is fitted into the recognized human body, which
consists of 20 body joints as shown in Figure 8. Per body joint the position and
rotation in quaternions are determined.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 7 25th-29th October 2021

Figure 8: Kinect for Windows skeleton

To forward the data of the Kinect in real-time, the virtual reality peripheral
network (VRPN) is used (Taylor, 2020). Therefore, a VRPN Server connects
directly with the Kinect via USB. The VRPN standardizes the data received as
one person is called a tracker and all 20 body joints are called sensors within
this tracker with their respective sensor number and data. The data is then
received by the VRPN-Client and directly forwarded further to the Unreal
Engine to be used in the dynamic pedestrian avatar.

As motion capturing data is received multiple times a second and data
packages are latency critical an unreliable UDP connection is used sending
motion capturing data. For establishing a reliable connection and sending status
messages between the instances where latency is not that critical, a separate
TCP connection is used.

To realize the dynamic pedestrian avatar inside the virtual city environment
mesh models with an inherited skeleton are used to display the movements of
the tracked pedestrian in real life. Depending on the avatars skeleton, the
Kinect skeleton can be directly applied or an additional assignment of the body
joints has to be done. In order to keep the proportions of the character
independent from the tracked subject only rotations are applied to the avatars
skeleton. The position is realized via the hip-centre bone (index 3).
Additionally, the avatars feet are automatically calibrated to the ground of the
digital environment respecting its topology. As shown in Figure 9, for the first
methodical approach and testing, the default Unreal mannequin is used to
display the movement of the real pedestrian.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 8 25th-29th October 2021

Figure 9: Dynamic pedestrian avatar

c. Vehicle Model

The vehicle model serves as an interface for the implementation of real
vehicles and driving functions into the virtual reality. At this point of
development, it consists of four sub models. A physical vehicle dynamics and
driver model executed in Matlab enables the accurate steering of the artificial
vehicle within the virtual reality either manual or automated. Additionally,
three sensors models simulate the data of a Lidar, a Radar and a camera based
environmental sensor within the virtual scene. These sub models are introduced
in the following sections.

i. Physical vehicle dynamics and driver model

To implement a vehicle in the virtual environment accurately, it is necessary to
simulate the influences of the vehicle dynamics depending on the scenes
environmental influences in a realistic way. Since the model needs to run in
real-time, it is important to find a complexity level that represents the cars
movements in a sufficient accuracy, without taking to much computation
resources. Most Virtual Reality development engines aim not to implement
physical simulation models. Therefore, the model is built in MATLAB
Simulink. It is composed of different sub models, as shown in Figure 10.

The vehicles vertical dynamics are simulated using a multibody system. Five
bodys represent the vehicles main masses, consisting of the bodywork and the
four wheels. The stimulation of the system is done at the wheels foot points. This
allows the interaction of the model and the virtual city environment, depending
on the topography of the scenery. A double track model simulates the lateral
dynamics of the vehicle. Additional models represent the drivetrain and the slip
angle dependency of the tires as well as environmental influences like rolling,
air and gradient resistances.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 9 25th-29th October 2021

Figure 10: Vehicle model with sub models and steering input

The steering of the model can either be done manually by a user input or
automated by a driver model. The automated model uses pre-defined spline
paths, created in the virtual city environment and exported to MATLAB. The
implemented path following algorithm bases on a pure pursuit controller, like
described in (Samuel, 2016). It controls the vehicles steering input by
following look ahead points in front of the car lying on the defined spline path.

As already mentioned, the implementation of the vehicle model takes place in
MATLAB. Corresponding to Figure 2, a representation of the car in the virtual
city environment is needed. Hence, a vehicle avatar is implemented in the
Unreal Engine. As the physical model, it consists of five bodies. The UDP
protocol is used for communication between the two models. To set the
vehicles transformation at the beginning of each computation frame in the
Unreal Engine, the positons of the five bodies, received from MATLAB, are
used. After that, a so-called line trace is done, to get the height coordinates of
the wheel contact patches. These data are frequently sent back to the vehicle
model. Thus, a closed control loop is implemented.

ii. 2.3.2. Lidar Model

An environmental sensor that is often used in modern vehicles with ADAS
systems is the Lidar. The technology uses laser beams to scan the surrounding.
Multiple beams are sent either one after another or at the same time. Since the
following model aims to simulate the physical properties of a Lidar, the
scanning principle is not relevant for further considerations. It is only important

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 10 25th-29th October 2021

that a possibility be provided to control the shape and resolution of the Lidar
field. For each sent Laser beams the time the light takes to travel to the target
object and back to the sensor is determined. According to (Winner et al, 2016).
This can be used to compute the distance as described in Equation 1.

0

2
⋅

= ofc t
d (1)

In this equation, c0 represents the speed of light, tof is the duration the light
travels and d is the distance to the target object. Since it is not possible to
simulate the speed of light in a virtual environment, a substitution model is
needed. For that the so called linetraces or raytraces offer an opportunity to
model the laser beams. If a ray hits an object within the scene, the impact
location and additional data are returned in a structure. To enable the coverage
of the field in front of a car corresponding to a real sensor, the field in front of
the virtual car is scanned at every simulation step. The azimuth and the
elevation angle define the area of interest. For the discretization of the field, the
angular resolution of the sensor in the respective direction is used. With that,
the complete azimuth range gets scanned, as shown in Figure 11. Then the
elevation angle is incremented and the azimuth angle is scanned again, until the
whole field is covered.

Figure 11: Discreet scanning of the Lidar field

If a ray hits an object, an algorithm is executed, computing the relevant data of
the Lidar recognition. The aim is to determine whether a point is detected by
the Lidar. An important value for this decision is the signal to noise ratio
(SNR), as defined in Equation 2.

= r

n

PSNR
P

 (2)

Here Pr represents the power received from the Lidar and Pn is the sum of the
induced noise powers. The higher the SNR value, the greater the probability of
detection. Corresponding to (Winner et al., 2016), (Kim et al., 2013) and
(Kernhof et al., 2018) and through additional adaptations and assumptions the
fraction of the received power can be expressed by Equation 3.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 11 25th-29th October 2021

2

3

cos()t r t sys i
r

V

A P
P

Q d
ρ τ η θ

π
⋅ ⋅ ⋅ ⋅ ⋅

=
⋅ ⋅

 (3)

In this equation, ρt is the reflectance coefficient of the target object; Ar
represents the receiving lens area; τ stands for the atmospheric transmission
coefficient; ηsys are the summarized system losses; θi is the incidence angle of
the light beam on the objects surface and QV stands for the divergence of the
shot beam. For the implementation of this equation into the virtual reality, most
of the parameters can be passed as variables. Only the incidence angle and the
targets distance are dependent on the linetraces. The distance can directly be
read out of the linetrace results, the incidence angle can be computed by
equation 4 using the incidence vector i and the surface normal n at the impact
point.

1cosi
i n
i n

θ −  
=   ⋅ 


 (4)

Besides the received power, the noise powers acting on the Lidars receiving
systems need to be determined. They are mainly composed of the sun induced
noise and the dark current noise. The sun induced noise is generated by
sunlight illuminating the targets surface and impinging the sensor. Equation 5,
according to (Kim et al., 2013), can compute the power of this noise source.

2
sun Si t r sysP E B A IFOVλ ρ τ η= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (5)

ESi represents the illumination intensity of the sunlight, Bλ is the
electromagnetic bandwidth of the receiving unit and IFOV is the instantaneous
field of view.
Thermal effects of the photo element generate the dark current noise. For the
computations of this noise, Equation 6 is used.

max

D
DK

IP =
ℜ

 (6)

Here, ID stands for the dark current and ℜmax represents the maximum
sensitivity of the photo element. Both parameters can usually be found in the
datasheets of photo elements. With that, it is now possible to compute the
signal to noise ratio and make a decision whether a point gets recognized or
not. Hence, on every simulations step a point cloud with metadata like the
SNR-value and the determined powers is generated. However, it is
problematic, that the coordinates of captured points are shown as perfectly
accurate values. Real Lidar sensors have a limited resolution due to the time
capturing system, amplifications and analog to digital conversions (Kernhof et
al., 2018). Since commercial sensors differ in capturing technologies and used
hardware, it is not feasible to model these inadequacies accurately. Instead, the
influence of the acting inadequacies are displayed. In the given case, this is

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 12 25th-29th October 2021

done by multiplying the resolution, provided by most sensor manufacturer,
with a white Gaussian noise and adding the result to the distance value.

Therefore, all relevant data are known and ready for further processing. To
enable this, the values are stored in arrays and sent to MATLAB by an UDP
communication. To generate a practical reference, the sensor is parametrized
according to the Valeo SCALA 3D Laser Scanner, a commercial serial product.
The determined values are mainly taken from the sensors datasheet (Hexagon,
2021). All missing values are adopted from the datasheet of a typical
photodiode (Hamamatsu, 2018) and the Literatures (Weber, 2018) and (Kim, et
al., 2013). The environmental parameters like the atmospheric transmission
coefficient or the irradiance of the sun are set dynamically within the virtual
scene, depending on the particular study.

iii. 2.3.3. Probabilistic Radar Model
Radar sensors are commonly used in applications for autonomous driver
assistance Systems, since they are comparatively cheap, provide a large
detection distance and are resistant against environmental influences. The
literature provides different approaches for the modelling of Radar sensors.
The virtual testbed aims to simulate all necessary environmental data for the
interaction of autonomous vehicles and driving functions with pedestrians in
real time. Hence, a probabilistic radar model is used. It provides all relevant
data in an object list and simulates the phenomena of the radar technology,
without performing a full physical simulation.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 13 25th-29th October 2021

Figure 12: Overview of the probabilistic radar model execution

The implemented model is largely based on the probabilistic radar model
presented by (Muckenhuber, et al., 2013) and is extended by several
assumptions. To represent the model as realistic as possible, the real
commercially used radar sensor Continental ARS 408 serves as a reference.
(Liebske, 2015) provides the Datasheet. The execution of the model takes place
in two steps, as shown in Figure 12. In a first step, the so-called Ground Truth
Data need to be generated. This is a dataset, containing all possibly detectable
Objects in the sensors field of view and the corresponding metadata without
any errors or inaccuracies. After the perfect data are generated, the second
execution step manipulates the dataset with respect to measurement errors,
resolutions and inaccuracies. Hence, the phenomena of the sensor are mapped.

For the generation of the Ground Truth all relevant objects lying in the
detection area of the sensor need to be captured. The datasheet of the sensor
provides the sensing areas displayed in Figure 13.

Figure 13: Sensing areas of the Continental ARS 408 (Liebske, 2015)

Since the current research illustrates the interaction of traffic participants in
inner-city environments, only the displayed near sensing area needs to be
modeled. As with the previous described Lidar model, Linetraces will be used
to get the relevant objects, similar to Figure 11. However, at this point, it is not
important to get the data of the trace itself; instead, the objects are passed to an
array, if they are hit the first time. The angular resolution of the Linetracing
needs to be much higher than at the Lidar model, not to omit any object.
Moreover, the detection range of the Sensor is not constant over the azimuth
angle. Hence, a case distinction is implemented. In the azimuth range of +/-
40°, the tracing length is set to a distance of 70 m. For the range between 40°
and 60° a simple approach based on linear equations is used to get the tracing
length depending on the azimuth angle. Since not all objects are relevant for
the virtual sensor, the next step is the classification and sorting of the objects.
Table 1 provides the types of the objects for the classification.

Table 1: Object classifications for the probabilistic radar model

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 14 25th-29th October 2021

Typ Index Color

Car 1 Cyan

Truck 2 Blue

Pedestrian 3 Red

Motorcycle 4 Yellow

Bicycle 5 Green

Unknown 6 Magenta

Based on that, all relevant actors within the virtual scene are augmented by a so
called tag. These tags are detected, if the actor is hit. Additionally, a color is
assigned to each class for visualization purposes. The positions and the
orientations are provided in global coordinates and thus need to be converted
into the local sensors coordinate system. Besides the positions and orientations,
the bounds or bounding boxes of the recognized actors are relevant for further
processings. If an actor only consist of one geometry, like a pillar, or a bin, the
bounds can directly be read out. If the actor contains more geometries, like a
car, consisting of a body and tires, or a bicycle, the bounds need to be
computed.
Finally, only the ideal maximum radar cross sections (RCS) are missing for the
recognized objects. This value gives an indication of how large the proportion
of the reflected radiation energy is, that impinges on an object. In further
processing steps the RCS value can be used to make a decision, if an object is
recognized. As the objects index, the value is predefined in tags for each
relevant actor within the scene. Since the value fluctuates depending on the
aspect angle, the pre-defined value provides the maximum possible radar cross
section. Previous works like (Degen, et al., 2021) show the general possibility
to simulate radar cross section within a virtual reality engine. However, the
paper also offers issues in real-time performance. Due to that, the current
probabilistic model uses a pre-defined RCS for every object and manipulates it
to get a realistic value.

If a probabilistic model is to be created from the data, the executions visualized
in step II of Figure 12 need to be done. The physical phenomena of the sensor
are replicated, without simulating its full physics. At first, the influences of the
sensors resolution and accuracy are applied to the ground truth signal as
displayed in Figure 14.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 15 25th-29th October 2021

Figure 14: Visualization of the data manipulation to simulate the sensors resolution and
accuracy.

The vehicle coordinate system and a theoretical target object are shown. The
green vector represents the ideal and error-free position of the target. To
implement the resolution influences so called range gates are formed,
corresponding to the sensors resolution. To sort the distance into the range
gates, the length of the vector is divided by the resolution and rounded to an
integer value. This results in the number of range gates. Subsequently the
resulting integer value is multiplied with the resolution again. This leads to the
yellow vector. The effect of the measurement accuracy is implemented next.
This value fluctuates randomly in positive and negative direction. Thus, the
value of the measurement accuracy, taken from the datasheet (Liebske, 2015),
is multiplied with a white Gaussian noise with a standard deviation of one. The
resulting vector, visualized in blue, is added to the yellow in range gates sorted
vector.

After the range manipulation, the next step is the implementation of aspect
angle and coverage effects to the RCS value. The method for that is visualized
in Figure 15. The manipulation is based on the assumption, that the maximum
RCS of an object is given at its longest side. In Figure 15 this is represented by
the yellow straight. To simulate coverage and aspect angle influences, the
recognized length of the target is computed. The result is the straight visualized
in red. In a next step, this straight is projected onto the Y-axis of the local
sensor coordinate system. To artificially reduce the ground truth RCS, it gets
multiplied with the quotient of the length of the yellow straight, representing
the objects longest side and the length of the purple straight, representing the
visible fraction of the object. This completes the reduction of the RCS.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 16 25th-29th October 2021

Figure 15: Method for the manipulation of the RCS value

According to Figure 12 the next step of the probabilistic model is the object
reclassification. Real radar sensors classify objects on their radar signature.
This is only possible in certain distances, depending on the objects type. So far,
all objects are recognized and classified correctly. To simulate the real radars
detection behavior, two thresholds are implemented. It is assumed, that cars,
trucks and motorcycles are correctly classified up to a distance of 50 m. For
Pedestrians and bicycles the assumed threshold is 30 m. If the distance of any
object exceeds the threshold defined for its class, then it gets reclassified to the
“unknown” class.

The last manipulation step visualized in Figure 12 is the implementation of
false positive (FP) and false negative (FN) objects. This means objects can
appear that are not physically part of the real surrounding (FP) and objects that
are physically part of the sensing area (FN) can stay undetected for a certain
time. Both phenomena are implemented in the following, starting with the FN
objects. A detection probability with a value between zero and one is pre-
defined for every Object class. On every execution step and for every actor a
pseudo random value is generated. If the generated value is smaller than the
detection probability, the object is added to the object list. If it is larger, the
object is neglected. With this, it is possible to adjust the average false negative
rate for every object class. The implementation of false positive objects is more
complex, as the objects are not only to be implemented, but also random
positions have to be found for them. At a first step, a value for the average
number of recognized FP objects at every frame is defined depending on the
object classes. Additionally, typically bounding box sizes are defined. The FP
objects are added after the execution of the complete probabilistic radar model.
The generation of the FP objects is done for every object class separately,

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 17 25th-29th October 2021

through a loop that iterates the object types. In that loop the class individual
average number of FP objects is used to compute the actual number of FP
objects for the respective simulation step, by applying a white Gaussian noise
to the value and converting it to an integer. After that, a second loop is initiated
for the generated integer value, where the respective FP object is generated.
The first value, that is generated for each FP object is the extend. For that, the
pre-defined average size of the class dependent bounding box is manipulated
by a Gaussian noise. The same procedure is also used to generate an artificial
RCS value for the respective object. After all metadata are created, the
respective object is positioned at a random position with a random orientation
within the sensors field of view. This is repeated until the computed number of
false positive objects for the object class is reached. After that, the object class
is incremented and the algorithm is executed again.

iv. 2.3.3. Camera Model
The last environmental sensor model implemented in the virtual urban
environment is a camera model. Since the camera itself only provides video
data, it is augmented by an exemplary application. The resulting video is used
in a detection algorithm. The structure of the implemented model, including the
detection algorithm and necessary interfaces is visualized in Figure 16

Figure 16: Structure of the implemented camera model, including an object detection
algorithm

To generate video data in a realistic way, the used Unreal Engine provides pre-
defined camera actors. These cameras enable the simulation of different
camera parameters and inadequacies. These camera actors provide the
opportunity to simulate almost any camera in a realistic way. Figure 17 shows
an example for that. For the generation of the upper image a cheap webcam
with many inadequacies is used. The lower image shows the attempt to
simulate these inadequacies within the Unreal Engine using a virtual camera
actor. It turns out that it is not possible to create an optically identical image;
however, it is possible to lower the content of information to the same level.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 18 25th-29th October 2021

Since especially the information that can be generated from an image are
important for ADAS applications, the virtual camera actor of the Unreal
Engine provides a valid method for the generation of image data in further
considerations.

The output of the generated video data is done in the so-called viewport and
thus directly onto the screen of the user. The resolution is depending on the
resolution of the viewport. If the resolution of a physical existing monitor does
not fit the demands, it is also possible to use virtual screens. To enable the
object detection based on the video output, it is necessary to capture the screen.
The interface for the next processing step is a virtual camera. This virtual
camera is used as an input by the open computer vision library (OpenCV) in
Python. The Python script separates the single frames of the captured video and
passes them to the object detection algorithm.

Figure 17: Comparison of real (top) and artificial (buttom) image errors

The algorithm used is the so-called Yolo algorithm that was developed by
(Redmon, et al., 2016). Yolo stands for “You only look once” and describes
how it works. It recognizes all objects in the respective frame, by looking at the
picture only one time. Other algorithms process the picture multiple times.
(Redmon, et al., 2016)

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 19 25th-29th October 2021

As mentioned above, the object classification is implemented in a Python script
via OpenCV. Since the Algorithm is based on a neural network, training data
are needed. In this study, it is not feasible to train the network with individual
datasets. Hence, pre-trained files are used. (Alexey, 2020) provides these in the
“model zoo”. This model enables the detection of 80 different objects, like
bicycles, cars, motorcycle, persons or even objects like animals, fruit, bags and
cups. It is not specially designed for traffic scenarios, but contains all relevant
object classes. After the execution, the outputs of the model are the object
classes, their bounding boxes and the position in the respective image. To
visualize the data, OpenCV is used again. The video stream serves as an input
and is augmented by the bounding boxes of the recognized objects, labeled
with the objects types. Furthermore, the positions, the sizes and the object
classes are written into a text file and stored for each analyzed image.

3. Virtual Test Field Verification
The topic of the following chapter is the verification of the previously
described and implemented virtual inner-city test field. This is done by testing
the implemented vehicle model, including the sensor simulations, and the
dynamic pedestrian avatar in a typical urban setup, including further urban
furniture and other static traffic participants. The functionality of the virtual
test field is assessed based on the general functionality and efficiency of the
model as well as the output of the virtual sensors. The aim is to evaluate
inadequacies and strengths of the test field.

a. Test Setup
To verify the functionality of all sensor models, it is necessary to implement
test objects for all relevant object classes that are described in Table 1, except
for the “unknown” class. The used scenario is shown in Figure 18.

Figure 18: Testscene for the virtual testbed assesment
The vehicle marked in red is the vehicle avatar that enables the interaction of
the vehicle model with the virtual scene. It also carries the sensor models. Next

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 20 25th-29th October 2021

to it, a blue car represents the objects class for “cars”. It is to be expected that
the vehicle is not completely visible.

Figure 19: Testobject for the "Car" class
The vehicle avatar is standing in front of a pedestrian crossing with traffic
lights. Different traffic participants are crossing the road. Figure 20 represents
the two pedestrian dummies crossing the road. The left robotic-looking object
is the dynamic pedestrian avatar, steered by a test person in real-time. The right
object is a static pedestrian avatar that is not able to change its pose. Both
objects are assigned to the “Pedestrian class”.

Figure 20: Pedestrian Objects, left dynamic, right static
In addition to the pedestrians, a cyclist crosses the road. The corresponsing
model is visualized in Figure 21. It consists of two sub models, the bicycle
itself and the rider. The bike is assigned to the bicycle class; the rider is defined
as pedestrian. It needs to be investigated, how the sensor outputs are affected
by this.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 21 25th-29th October 2021

Figure 21: Test object for the bicycle class
A four-lane road runs behind the pedestrian crossing. To represents the
motorcycle class, a woman riding a scooter is placed on the closer track of that
road. As with the bicyclist, the model consists of two submodels. The scooter is
tagged as “Motcycle”, since there is no own class for scooters. The rider is
assigned to the “Pedestrian” class. This model is visualized in Figure 22.

Figure 22: Test object for the motorcycle class
The last test object, placed on the more distant lane, is a typical inner-city
public bus. The object is assigned to the “Truck” class, since there is no own
class for busses. It is visualized in Figure 23.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 22 25th-29th October 2021

Figure 23: Test object for the truck class

b. Test Execution
As mentioned in the beginning, the aim of this work is to describe the
development and implementation of the urban test field. This chapter serves to
test the basic functionality of the models. This is done by a static test in the
previously described scenario. Further studies, based on the results of this
work, could investigate complex and highly dynamic inner-city scenarios. In
order to test the models functionality, a simple static structure is sufficient.

After the scenario is set up corresponding to the last chapter and all relevant
metadata are defined for the test objects, the test execution can be done. Since
the scenario is static, it is sufficient to capture one simulation step and analyze
the results. As described in the respective chapter, the radar and the lidar
models are parametrized corresponding to its real equivalents. For the radar
model the generation of false positive and false negative objects is activated.
The camera is parametrized to a sensor size of 23.76 mm x 13.365 mm, with an
aperture of 2.8 and a focal length of 12 mm. This corresponds to a field of view
of approximately 90°. The results of all sensor models are displayed on the
users screen. For the representation of the radar and lidar data, Matlab is used.
For showing the camera model outputs, an Open-CV video stream augmented
by the recognized object is shown to the user. To get the corresponding results
for a specific time step, the model is executed stepwise, so that it can be paused
and the results for a specific frame can be captured. The results are listed
below.

c. Test Results

The results of the previously described test are shown in the following,
corresponding to the respective sensor.

i. Results of the Lidar Model

The results of the Lidar Model are shown in Figure 24. The scale of the plot is
limited to a lateral distance of 40 m and a longitudinal distance of +/- 20 m, so
that the region of interest lays within the captured field. All received points,
with a Signal-to-Noise ratio smaller than five are neglected. It is assumed, that

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 23 25th-29th October 2021

this value does not enable a correct recognition. The colored boxes visualized
in the plot are added manually, for further explanations. All relevant objects
within the scene are recognizable. The points in the purple box near to the test
vehicle are generated by the car. The yellow boxes represent the both
pedestrians. It shows that the static dummy is recognized as well as the
dynamic object. The Lidar plot also detects the step-range of the pedestrian. On
closer inspection, the plot shows the front leg and the back leg position of the
step. Next to that, the points in the red box are generated by the cyclist and the
corresponding bike. The points on the left side, lying in the gray box are
reflected by trees and signs. The blue box represents the women on the scooter.
It can be seen, that the density of the points is lower, caused by the raising
distance. The contour of the bus is also recognizable. It is represented by the
green rectangle.

Figure 24: Resulting sensor data of the lidar model

The lidar model shows a valid behavior. All results are plausible and the
execution of the model works fluently. Further research and a validation more
in depth based on the measured data of real lidar sensors could improve the
quality of the model. However, the current implementation shows an adequate
possibility for the real-time generation of Lidar raw data.

ii. Results of the Probabilistic Radar Model

The results of the probabilistic radar model are shown in Figure 25. The plot is
scaled equivalent to the lidar plot.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 24 25th-29th October 2021

Figure 25: Resulting sensor data of the radar model
The data also show plausible results. All relevant objects lying in the scene that
have been tagged are recognized. This shows that no false negative object was
generated within the frame under investigation. However, a false positive
object can be found at a distance of 20 m on the left side. The object is from
the “unknown” class. It can also be seen, that neither the cyclist nor the rider of
the scooter is centrally placed on the respective vehicle. This is caused by the
implemented inaccuracy of the sensor and the fact, that the riders and the
vehicles are treated as separate objects. At this point further investigations
could help to find out if it is better to treat the riders and the vehicles as one
object or leave them separated. Nonetheless, the results of the sensor are
plausible and the performance of the model execution is sufficient. Here a
comparison with real sensor data of the described radar system in a real
environment could also help to improve the model quality.

iii. Results of the Camera Model

The results of the camera model are shown in Figure 26. The upper image
shows the raw camera output of the Unreal Engine that is used as an input for
the object recognition algorithm. The lower image show the same augmented
by the output of the algorithm.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 25 25th-29th October 2021

Figure 26: Results of the AI-based camera model, without and with recognized objects

It shows, that all relevant objects implemented for testing are recognized. The
pedestrians, both static and dynamic and the cyclist are recognized as “person”
with a certainty of 97 % or higher, whereas the driver of the scooter is
recognized with a certainty of 57 %. The bicycle has a certainty of 96 % and
the scooter of 73 % to be a motorbike. Additionally, all traffic lights get
recognized. The bus lying in the background also is detected, but only with a
certainty of 25 %. It is conspicuous, that not only the car next to vehicle avatars
is detected, but also the avatar itself, only by a fraction of its bonnet. Lastly,
one false detection is done by the algorithm. A backpack that is not part of the
scene is recognized. Nevertheless, the sensor model and algorithm proved to be
a good example of camera-based object recognition. Further investigations
could analyze the influence of different environmental parameters like fog,
rain, snow or dirty optics on the detection behavior. It would also be interesting
to examine the influence on camera inadequacies like chromatic aberrations or
blur on the results.

4. CONCLUSION

The present work shows a novel holistic approach for the accurate testing of
autonomous driver assistance systems. It provides a new methodology for the
linking of real pedestrians, vehicles and their functions in a highly realistic
urban environment. Hence, inaccuracies in real testing procedures, caused by
accident hazards, static test environments or just to less test executions are
circumvented.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 26 25th-29th October 2021

The interaction of the vehicle and its environment is enabled by three different
sensor models. These respective models provide an example for the commonly
used camera, Lidar and Radar surrounding sensors. Not only the typical data of
these sensors are provided, but also typical phenomena and shortcomings are
implemented. Furthermore, an accurate vehicle dynamics simulation is used to
map the movements of a real vehicle in the virtual environment. To interact
with the virtual vehicle directly, this approach enables test subjects to dive into
the scenery by a motion capturing and a head mounted display. The person sees
the virtual surrounding and their movements are presented by an avatar in the
city scene. With that, the model provides a new opportunity for the situational
real-time testing of autonomous vehicles and their functions. Due to the already
large amount of content, it is not possible to do a complete validation of the
implemented models within this work. However, a simple verification
approach shows plausible results and confirms the real-time capability of the
model. Further researches could analyze the implemented contents in depth, by
investigating various scenarios in the virtual environment as well as on real
testing grounds. Additionally, it would be interesting to test the reaction of real
vehicles and their functions on the virtually provided data.

Acknowledgement

The Project is funded by the Ministry of Economic Affairs, Innovation,
Digitization and Energy of North Rhine-Westphalia in the
Leitmarktwettbewerb IKT.NRW program.

References

Bundesministerium für Verkehr und digitale Infrastruktur (BMVI) (2015),

“Strategie automatisiertes und vernetztes Fahren: Leitanbieter bleiben,
Leitmarkt werden, Regelbetrieb einleiten,”

Bundesministerium für Verkehr und digitale Infrastruktur (BMVI) (2021),
„Gesetz zum autonomen Fahren tritt in Kraft“
https://www.bmvi.de/SharedDocs/DE/Artikel/DG/gesetz-zum-autonomen-

fahren.html

Statista (2020)
https://de.statista.com/statistik/daten/studie/1083873/umfrage/anteil-der-pkw-

mit-fahrassistenzsystemen-in-deutschland/

Statista (2020).
https://de.statista.com/statistik/daten/studie/1108736/umfrage/meinungsumfrag

e-zu-assistenzsystemen-in-autos-in-deutschland/

Alexey, GitHub, Inc. (2020). https://github.com/

AlexeyAB/darknet/wiki/YOLOv4-model-zoo

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 27 25th-29th October 2021

Degen, R., Ott, H., Overath, F., Schyr, Ch., Leijon, M., Ruschitzka, M. (2021)

Methodical approach to the development of a Radar Sensor model for the
Detection of Urban Traffic Participants Using a Virtual Reality Engine.
Journal of Transportation Technologies. 11, 02, 179-195.

Hamamatsu Photonics K.K. (2018).

https://www.hamamatsu.com/resources/pdf/ssd/s12023-
02_etc_kapd1007e.pdf

Hexagon Autonomy and Positioning (2021).

https://autonomoustuff.com/products/valeo-scala

Kernhof, J., Leuckfeld,J. and Tavano, G. (2018). LiDAR-Sensorsystem für

automatisiertes und autonomes Fahren, in: Thille, T. Automobil-Sensorik 2.
Springer Vieweg. Berlin, Heidelberg.

Kim, S., Lee, I.and Kwon, Y. J.(2013). Simulation of a Geiger-Mode Imaging

LADAR System for Performance Assessment. Sensors 13 ,7, 8460-8489

Liebske, R. (2015), Contionental Automotive. ARS 408-21 Premium Long

Range Radar Sensor 77 GHz.

Muckenhuber, S., Holzer, H., Rübsam, J., Stettinger, G. Object-based sensor

model for virtual testing of ADAS/AD functions. 2019 IEEE International
Conference on Connected Vehicles and Expo (ICCVE)

Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You Only Look

Once:Unified, Real-Time Object Detection. IEEE Conference on Computer
Vision and Pattern Recognition.

Samuel, M., Hussein, M. and Mohamad, M. B. (2016).

A Review of some Pure-Pursuit based Path Tracking Techniques for Control
of Autonomous Vehicle. International Journal of Computer Applications 135,
1, 35-38

Taylor, R. (2020). https://github.com/vrpn/vrpn

Weber, H., (2018). Funktionsweise und Varianten von Lidar-Sensoren. Sick

AG.

Winner, H., Hakuli, S., Lotz, F. and Singer, C. (2016). Handbook of Driver

Assistance Systems. 1st edn. Springer International Publishing. Cham.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 28 25th-29th October 2021

Zhang, Z. (2012). Microsoft Kinect Sensor and Its Effect. IEEE MultiMedia,
vol. 19, no. 2, pp. 4-12, doi: 10.1109/MMUL.2012.24

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 29 25th-29th October 2021

